Thèse soutenue

Etude d'une équation intégrale stabilisée pour la résolution itérative de problèmes de diffraction d'ondes harmoniques en électromagnétisme
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Sophie Borel
Direction : François Alouges
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance en 2006
Etablissement(s) : Paris 11
Partenaire(s) de recherche : autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)

Résumé

FR  |  
EN

Cette thèse est une contribution à la résolution itérative de problèmes de diffraction d'ondes électromagnétiques harmoniques par un corps parfaitement conducteur. Nous cherchons à construire de nouvelles équations intégrales dédiées à ce problème qui soient intrinsèquement bien conditionnées, propices à une résolution itérative rapide, ce qui fait défaut aux équations classiques. Pour cela, nous représentons la solution des équations de Maxwell comme le champ électromagnétique généré par une combinaison de potentiels électrique et magnétique, ceux apparaissant dans l'équation en sources combinées (CSIE) classique, mais que nous couplons grâce à un opérateur au lieu de coefficients scalaires. L'équation ainsi obtenue peut alors être vue comme une généralisation de la CSIE. Cette formulation dépend du choix de l'opérateur de couplage, dont la vocation est d'approcher l'admittance extérieure de l'obstacle. Nous profitons de la localisation croissante du phénomène de diffraction avec la montée en fréquence pour proposer des approximations locales de l'admittance dédiées au régime des hautes fréquences. Cette nouvelle équation est alors bien posée pourvu que la localisation soit correctement adaptée à la fréquence. Les expériences numériques, dont certaines ont été réalisées pour des obstacles industriels, montrent que cette formulation conduit à des systèmes linéaires mieux conditionnés que les équations classiques, ce qui se traduit par une accélération de la résolution itérative.