Thèse soutenue

Hydratation des argiles gonflantes : séquence d'hydratation multi-échelle : détermination des énergies macroscopiques à partir des propriétés microscopiques

FR  |  
EN
Auteur / Autrice : Fabrice Salles
Direction : Henri Van DammeOlivier BildsteinMichel Jullien
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance en 2006
Etablissement(s) : Paris 6

Résumé

FR  |  
EN

Les smectites possèdent des propriétés qui en font des candidates potentielles pour constituer une des barrières pour le stockage des déchets radioactifs en milieu géologique profond : faible perméabilité, gonflement et rétention de cations. Le cœur de cette thèse est la détermination des liens existant entre les propriétés d’hydratation, de gonflement et de mobilité des cations, c'est-à-dire les propriétés de confinement du matériau. L’objectif est de comprendre et prédire le comportement de l’eau dans les smectites en suivant deux axes de recherche : les aspects mécanistique et énergétique de l’hydratation des smectites. Nous avons travaillé sur la montmorillonite Na-Ca contenue dans la bentonite MX 80, sous forme échangée, et monoionique (saturée par des cations alcalins ou des cations Ca). L’approche traverse les différentes échelles (microscopique, mésoscopique et macroscopique) et conduit à étudier les différentes composantes du système (feuillet-cation-eau), en mettant en œuvre des méthodes expérimentales de manière originale (thermoporométrie et conductivité électrique pour différentes humidités relatives (HR)) et des méthodes théoriques (calculs électrostatiques). En premier lieu, l’état sec est défini par ATVC (Analyse Thermique à Vitesse Contrôlée). Ensuite une caractérisation classique de la porosité de la smectite pour l’état sec est réalisée (intrusion de mercure, adsorption d’azote) et nous permet de montrer l’existence d’une mésoporosité (2-10 nm). Les expériences de thermoporométrie et de conductivité pour différents états d’hydratation ont permis de suivre l’augmentation des tailles de pore et de la mobilité des cations en fonction de l’hydratation. Nous mettons notamment en évidence l’existence d’un gonflement osmotique mésoscopique pour de faibles humidités relatives (environ 50-60% HR) pour les cations Li et Na. En combinant les résultats de thermoporométrie, diffraction des Rayons X et conductivité électrique, nous sommes en mesure de proposer une séquence d’hydratation complète pour chaque cation, montrant ainsi le rôle du cation compensateur dans l’hydratation de la smectite : il est responsable de la structure de la porosité à l’état sec et de l’évolution des tailles de pore en fonction de la HR et il modifie la séquence d’hydratation par sa mobilité dans l’espace interfoliaire. L’importance de la nature du cation est également mise en évidence par le modèle énergétique. Les calculs électrostatiques utilisant le formalisme PACHA (Méthode d’Egalisation des Electronégativités) montrent que, pour les petits cations, l’énergie d’hydratation du cation dans la structure argileuse est prépondérante, alors que pour les gros cations, c’est l’énergie d’hydratation des feuillets qui est prépondérante. Pour obtenir ces résultats, nous avons déterminé les enthalpies de surface pour l’état sec, qui montrent une évolution cohérente, en fonction de la charge partielle du cation, avec l’augmentation de taille de pores et donc de taille de particules. Ensuite, au moyen d’un modèle théorique, nous avons calculé les énergies de gonflement, les énergies d’hydratation des surfaces et des cations se trouvant dans l’espace interfoliaire.