Thèse soutenue

FR
Auteur / Autrice : Thomas Lemaire
Direction : Simon Lacroix
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance en 2006
Etablissement(s) : Toulouse, ENSAE

Mots clés

FR

Mots clés contrôlés

Mots clés libres

Résumé

FR

Cette thèse aborde le problème de localisation et cartographie simultanée pour un robot mobile. Lorsque le robot évolue dans un environnement inconnu, il doit construire une carte au fur et à mesure qu'il explore le monde, tout en se localisant dans celle-ci. De l'anglais Simultaneous Localisation And Mapping, le SLAM est une brique essentielle de l'architecture d'un robot autonome. Plusieurs éléments sont nécessaires à la résolution du SLAM, en particulier la perception de l'environnement permet d'observer les éléments de référence (appelés amers) qui constituent la carte. Ces travaux se focalisent sur l'utilisation de la vision artificielle comme moyen de percevoir l'environnement, ainsi la carte et la position du robot peuvent être estimées dans l'espace 3D complet. Les caméras numériques sont des capteurs bien adaptés aux systèmes embarqués et fournissent une information riche sur l'environnement. Mais une caméra ne permet pas de mesurer la distance aux objets, dont on n'obtient donc que des observations partielles. En particulier, ceci rend difficile l'ajout d'un nouvel amer dans la carte. Une méthode d'initialisation pour des amers de type point est proposée, elle s'appuie sur un mécanisme de génération puis de sélection d'hypothèses. Une architecture SLAM pour un robot terrestre est décrite dans son ensemble, en particulier une caméra panoramique est utilisée et permet de percevoir l'environnement sur 360 degrés. Cette architecture a été implémentée sur un robot de type ATRV. Une carte de points 3D est pertinente pour la localisation d'un robot, mais donne une information limitée sur la structure de l'environnement. Un algorithme permettant d'utiliser des segments de droite est proposé, et testé sur des données réelles.