Géométrie des bords : compactifications différentiables et remplissages holomorphes

par Benoit Kloeckner

Thèse de doctorat en Mathématiques

Sous la direction de Abdelghani Zeghib.

Soutenue en 2006

à École normale supérieure (Lyon) .


  • Résumé

    La première partie de la thèse concerne certaines compactifications. On se donne un espace symétrique à courbure négative et on cherche à déterminer ses compactifications différentiables, c'est-à-dire les plongement de l'espace dans une variété à bord pour lesquels l'action des isométries se prolonge de façon différentiable. Les résultats principaux sont : la classification de ces compactifications dans le cas de l'espace hyperbolique réel, et l'inexistence d'une telle compactification dans le cas des espaces de rang supérieur. La seconde partie concerne les remplissages holomorphes. On se donne une variété CR compacte M et un sous-groupe d'automorphismes F. La question est alors de déterminer quelles sont les variétés compactes à bord X dont le bord est M et telles que l'action de F se prolonge par biholomorphismes sur tout X. On montre sous des hypothèses de convexité, de dimension et de taille de F un résultat d'unicité (à éclatement près).

  • Titre traduit

    Boundaries geometry : differentiable compactifications and holomorphic fillings


  • Résumé

    In the first part of the manuscript we study some compactifications. Given a nonpositively curved symmetric space we search for its differentiable compactifications, that is its embedding into a manifold with boundary where the action of the isometry group extends differentiably up to the boundary. The main results are : the classification of such compactifications of the real hyperbolic space, and the nonexistence of such compactifications for higher rank spaces. In the second part we are concerned with holomorphic fillings. Given a compact R manifold M and a subgroup F of automorphisms, we ask which compact complex manifolds with boundary X have boundary isomorphic to M and admit a prolongation of the action of F. Under assumption on the convexity and dimension of M and on the size of F, we prove a unicity result (up to blow-up).

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (164 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. [155]-159. Index

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque Diderot LSHS (Lyon).
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2006ENSL0385
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.