Calcul d'algèbre de Frobenius sur l'homologie des lacets libres d'une variété
FR |
EN
Auteur / Autrice : | Jean-François Le Borgne |
Direction : | Jean-Claude Thomas |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance en 2006 |
Etablissement(s) : | Angers |
Partenaire(s) de recherche : | Laboratoire : Laboratoire angevin de recherche en mathématiques (Angers) |
Mots clés
FR
Mots clés contrôlés
Résumé
FR |
EN
En 1999, M. Chas et D. Sullivan ont mis en évidence sur l'homologie de l'espace des lacets libres d'une variété une structure de BV-algèbre. C'est ce qui fonde la théorie topologique des cordes. Dans cette thèse, nous montrons comment la compatibilité de la suite spectrale de Serre aux morphismes de Gysin de plongements lisses de codimension finie entre vari étés permet d'effectuer des calculs de ces structures de topologie des cordes. Nous étudions essentiellement le ”loop produit” et le ”loop coproduit” qui munissent l'homologie de l'espace des lacets libres d'une vari été d'une structure d'algèbre de Frobenius sans counité.