Thèse soutenue

Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes

FR  |  
EN
Auteur / Autrice : Slah Sahmim
Direction : Fayssal Benkhaldoun
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance en 2005
Etablissement(s) : Paris 13

Mots clés

FR

Mots clés contrôlés

Mots clés libres

Résumé

FR

Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, même à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint-Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vàzquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasique des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la jacobienne du système. On montre que pour lles configurations faiblement non hyperboliques, on peut calculer le signe de la jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grnde précision, que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.