Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes
Auteur / Autrice : | Slah Sahmim |
Direction : | Fayssal Benkhaldoun |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance en 2005 |
Etablissement(s) : | Paris 13 |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, même à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint-Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vàzquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasique des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la jacobienne du système. On montre que pour lles configurations faiblement non hyperboliques, on peut calculer le signe de la jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grnde précision, que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.