Thèse soutenue

Architecture et apprentissage d'un système hybride neuro-markovien pour la reconnaissance de l'écriture manuscrite en-ligne

FR  |  
EN
Auteur / Autrice : Émilie Poisson
Direction : Christian Viard-Gaudin
Type : Thèse de doctorat
Discipline(s) : Automatique et informatique appliquée
Date : Soutenance en 2005
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : École doctorale sciences et technologies de l'information et des matériaux (Nantes)
Partenaire(s) de recherche : Autre partenaire : Université de Nantes. Faculté des sciences et des techniques - Centrale Nantes (1991-....) - École nationale supérieure des mines (Nantes ; 1990-2016)

Résumé

FR  |  
EN

Les travaux présentés dans le cadre de cette thèse portent sur l'étude, la conception, le développement et le test d'un système de reconnaissance de mots manuscrits non contraints en-ligne pour une application omni-scripteurs. Le système proposé repose sur une architecture hybride neuro-markovienne comportant d'une part, un réseau de neurones à convolution (TDNN et/ou SDNN), et d'autre part des modèles de Markov à états cachés (MMC). Le réseau de neurones a une vision globale et travaille au niveau caractère, tandis que le MMC s'appuie sur une description plus locale et permet le passage du caractère au niveau mot. Nous avons d'abord étudié le système de reconnaissance au niveau caractère isolé (digits, majuscules, minuscules) et optimisé les architectures des réseaux en termes de performances et de taille. La seconde partie du travail a porté sur le passage au niveau mot. Ici, l'effort a consisté avant tout à la définition d'un schéma d'apprentissage global au niveau mot qui permet d'assurer la convergence globale du système, en définissant une fonction d'objectif qui mixe des critères basés modèle générateur (typiquement par maximum de vraisemblance) et des critères discriminants (de type maximum d'information mutuelle). Les différentes résultats présentés (sur les bases MNIST, IRONOFF, UNIPEN) montrent l'influence des principaux paramètres du système, soit en termes de topologie, de sources d'information, de modèles d'apprentissage (nombre d'états, pondération des critères, durée)