Techniques de fouille de données pour l'optimisation automatique des performances des entrepôts de données

par Kamel Aouiche

Thèse de doctorat en Informatique

Sous la direction de Djamel Abdelkader Zighed et de Jérôme Darmont.

Soutenue en 2005

à Lyon 2 .


  • Résumé

    Avec le développement des bases de données en général et des entrepôts de données en particulier, il est devenu très important de réduire les tâches d'administration des systèmes de gestion de base de données. Les systèmes auto-administratifs ont pour objectif de s'administrer et de s'adapter eux-mêmes, automatiquement, sans perte ou même avec un gain de performance. L'idée d'utiliser des techniques de fouille de données pour extraire des connaissances utiles à partir des données stockées pour leur administration est une approche très prometteuse, notamment dans le domaine des entrepôts de données, où les requêtes sont très hétérogènes et ne peuvent pas être interprétées facilement. L'objectif de cette thèse est d'étudier les techniques d'auto-administration des entrepôts de données, principalement des techniques d'optimisation des performances, comme l'indexation et la matérialisation de vues, et de rechercher une manière d'extraire des données elles-mêmes des connaissances utilisables pour appliquer ces techniques. Nous avons réalisé un outil qui recommande une configuration d'index et de vues matérialisées permettant d'optimiser le temps d'accès aux données. Notre outil effectue une recherche de motifs fréquents fermés sur une charge donnée et une classification non supervisée des requêtes de la charge pour construire cette configuration d'index et de vues. Nous avons également couplé la sélection d'index et de vues matérialisées afin de partager efficacement l'espace de disque alloué pour stocker ces structures. Enfin, nous avons appliqué les principes développés dans le cadre relationnel aux entrepôts de données XML. Nous avons proposé une structure d'index précalculant les jointures entre les faits et les dimensions XML et adapté notre stratégie de sélection de vues pour matérialiser des vues XML.

  • Titre traduit

    Data mining techniques for automative performance optimization of data warehouses


  • Pas de résumé disponible.


  • Résumé

    With the development of databases in general and data warehouses in particular, it becomes very important to reduce the function of administration. The aim of auto-administrative systems is administrate and adapt themselves automatically, without loss or even with a gain in performance. The idea of using data mining techniques to extract useful knowledge for administration from the data themselves has been in the air for some years. However, no research has ever been achieved. As for as we know, it nevertheless remains a very promising approach, notably in the field of the data warehousing, where the queries are very heterogeneous and cannot be interpreted easily. The aim of this thesis is to study auto-administration techniques in databases and data warehouses, mainly performance optimization techniques such as indexing and view materialization, and to look for a way of extracting from stored data themselves useful knowledge to apply these techniques. We have designed a tool that finds an index and view configuration allowing to optimize data access time. Our tool searches frequent itemsets in a given workload and clusters the query workload to compute this index and view configuration. Finally, we have extended the performance optimization to XML data warehouses. In this area, we proposed an indexing technique that precomputes joins between XML facts and dimensions and adapted our materialized view selection strategy for XML materialized views.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (240 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 229-240

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Lumière (Bron). Service commun de la documentation. Bibliothèque universitaire.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2005LYO20066
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.