Thèse soutenue

Systèmes intégrables et algèbres de réflexion dynamiques

FR  |  
EN
Auteur / Autrice : Zoltan Nagy
Direction : Jean Avan
Type : Thèse de doctorat
Discipline(s) : Physique théorique
Date : Soutenance en 2005
Etablissement(s) : Cergy-Pontoise
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie (Cergy-Pontoise, Val d'Oise)

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse est consacrée à l'étude de différentes algèbres quadratiques dynamiques et de leurs applications aux modèles intégrables. Les algèbres quadratiques dynamiques sont des généralisations de l'algèbre de réflexion introduite par Cherednik pour traiter des systèmes intégrables sur la demi-ligne et plus généralement des systèmes intégrables avec des conditions aux bords ouvertes. Nous définissons deux algèbres quadratiques dynamiques : totalement dynamique et semi-dynamique. La première est une simple généralisation du groupe quantique elliptique à bord, la seconde est une structure nouvelle. Nous montrons dans les deux cas comment construire des familles de Hamiltoniens commutants comme des analogues quantiques de la trace de puissances de la matrice de Lax. Nous montrons aussi, en se servant de la structure de comodule que nous élucidons, comment construire des Hamiltoniens de type chaîne de spins en utilisant les représentations de ces algèbres comme des briques élémentaires. Ces résultats sont indépendants de l'existence de la correspondance vertex-IRF qui relie les algèbres dynamiques et non dynamiques.