Thèse soutenue

Théorie des champs : approche multisymplectique de la quantification, théorie perturbative et application

FR  |  
EN
Auteur / Autrice : Ramiaramanana Dikanaina Harrivel
Direction : Vladimir Roubtsov
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2005
Etablissement(s) : Angers
Partenaire(s) de recherche : Laboratoire : Laboratoire angevin de recherche en mathématiques (Angers)

Résumé

FR  |  
EN

Le sujet principal de cette thèse est l'étude de l'équation de Klein–Gordon couplée avec une interaction d’ordre p entier et la quantification de cette théorie du point de vue multisymplectique. La géométrie multisymplectique est un cadre général permettant de donner une formulation Hamiltonienne covariante et de dimension finie aux problèmes variationnels à plusieurs variables. Dans une première partie nous nous intéressons à l'équation de Klein–Gordon linéaire (théorie libre). Nous proposons une description exhaustive de la quantification canonique du champ libre dans le cadre multisymplectique. Nous développons trois points de vue sur cette construction : un point de vue algébrique par une représentation de l’algèbre de Lie des symétries, un point de vue par déformation et enfin une approche par la quantification géométrique. Dans une seconde partie nous traitons le cas du champ en interaction c’est à dire l'équation non–linéaire. Nous construisons dans un premier temps des observables qui sont des ”intégrales premières” pour les solutions classiques. Ceci aboutit de manière naturelle à des fonctionnellesdéfinies sur l’espace des solutions par des séries construites à l’aide des arbres plans et de certaines règles de Feynman. Nous explicitons ensuite le lien qui relie ces observables et les ”séries de Butcher” décrivant les solutions d’une équation aux dérivées partielles non linéaires et nous montrons comment nous pouvons retrouver le calcul perturbatif quantique à l’aide de ces séries. Enfin nous voyons comment les séries de Butcher peuvent s’appliquer en théorie du contrôle.