Thèse soutenue

Méthodes de volumes finis pour les équations de Stokes

FR  |  
EN
Auteur / Autrice : Philippe Blanc
Direction : Raphaèle Herbin
Type : Thèse de doctorat
Discipline(s) : Informatique et mathématiques appliquées
Date : Soutenance en 2005
Etablissement(s) : Aix-Marseille 1
Partenaire(s) de recherche : autre partenaire : Université de Provence. Section sciences

Mots clés

FR

Mots clés contrôlés

Résumé

FR

Le but de ce travail est d'analyser et de comparer trois méthodes de volumes finis pour les équations de Stokes. Pour la première, on utilise un maillage structuré de type "MAC". On prouve alors la convergence du schéma avec un second membre dans H^{-1} et on obtient des estimations d'erreur d'ordre 1 ou 2 suivant la régularité du maillage et de la solution. La deuxième méthode est basée sur un maillage triangulaire. On obtient alors la convergence du schéma et une estimation d'erreur d'ordre 1 si les triangles sont équilatéraux. Enfin, la dernière utilise un maillage polygonal presque quelconque. Elle coïncide avec la précédente dans le cas d'un maillage formé de triangles équilatéraux. Pour cette dernière on a encore obtenu la convergence du schéma. On a ensuite comparé ces trois méthodes sur trois cas test, dont la cavité entraînée et les tourbillons de Green-Taylor, et différents maillages : le maillage "MAC" pour la première méthode, deux maillages triangulaires pour les deux autres et un maillage rectangulaire pour la dernière.