(In-)validation de modèles de systèmes incertains
Auteur / Autrice : | Omar Mouhib |
Direction : | Dominique Beauvois |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences appliquées. Automatique et traitement du signal |
Date : | Soutenance en 2004 |
Etablissement(s) : | Paris 11 |
Partenaire(s) de recherche : | Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne) |
Mots clés
Mots clés libres
Résumé
Cette thèse s'intéresse à l'approche fréquentielle d'(in-)validation de modèle qui consiste à caractériser les écarts objet/modèle par l'introduction non seulement de bruits perturbateurs, mais aussi d'opérateurs d'incertitude dans la relation fonctionnelle associée au modèle choisi. En supposant que les incertitudes et le bruit sont de norme bornée nous avons défini la notion de l'ensemble de modèles et la question générique du problème de validation de modèle de systèmes incertains est la suivante : Etant données des mesures expérimentales et un ensemble de modèles, existe t il un modèle dans l'ensemble de modèles qui pourrait produire les données entrées/sorties observées? Ceci a demandé simplement de trouver un élément de l'ensemble de modèles et un élément de l'ensemble signal d'entrée inconnu tels que les informations observées sont produites exactement. Le problème de trouver un tel membre de l'ensemble de modèles a été formulé selon deux stratégies. La première est de déterminer un signal de bruit de norme minimale tel que les données observées soient générées par le modèle entaché d'une incertitude de norme inférieure à 1. L'inconvénient de cette méthode est que le problème d'optimisation posé ne peut être résolu par LMI que pour des cas spéciaux de l'ensemble de modèles. La deuxième stratégie étudiée est de déterminer simultanément la plus petite norme d'incertitude et la plus petite norme du signal de bruit telles que le modèle obtenu génère les données observées. Le procédé expérimental de trois cuves ainsi qu'un exemple académique de simulation ont fourni une excellente validation des méthodes étudiées.