Etude de méthodes d'ordre élevé pour résoudre les équations de Maxwell dans le domaine temporel : Application à la détection et à la compatibilité électromagnétique
Auteur / Autrice : | Sébastien Pernet |
Direction : | Gary Chalom Cohen |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance en 2004 |
Etablissement(s) : | Paris 9 |
Mots clés
Mots clés contrôlés
Résumé
Nous nous intéressons à la résolution des équations de Maxwell dans le domaine temporel. Pour cela, nous étudions deux méthodes d'ordre élevé : La première est une méthode d'éléments finis spectrale. Un choix judicieux d'espace d'approximation et d'un schéma temporel de type leap-frog permet d'aboutir à un algorithme précis et rapide. Des expériences numériques ont montré l'efficacité de la méthode. Malheureusement, l'utilisation de maillages trop déformés entraîne l'apparition d'ondes parasites qui détériorent la solution. La seconde est une méthode Galerkin discontinue spectrale. L'utilisation du même espace d'approximation ainsi que d'un formalisme non dissipatif conduit à une méthode demandant un faible stockage et à un algorithme rapide. On met en évidence la disparition des ondes parasites ainsi que l'obtention d'un gain de stockage et de temps. Nous améliorons sa rapidité grâce à une stratégie de pas de temps local et une parallélisation du code.