Ecoulements diphasiques en milieux poreux : modélisation et simulation de cas d'imbibition, de drainage et d'ébullition
Auteur / Autrice : | Johann Benard |
Direction : | Robert Eymard |
Type : | Thèse de doctorat |
Discipline(s) : | Énergétique et génie des procédés |
Date : | Soutenance en 2004 |
Etablissement(s) : | Université de Marne-la-Vallée (1991-2019) |
Mots clés
Résumé
Le contexte général de cette étude concerne la modélisation et la simulation numérique d'écoulements diphasiques en milieux poreux pour des applications à des problèmes d'ingénierie civile ou environnementale. Nous nous focalisons sur les phénomènes de transport mis en jeu dans les cas d'imbibition, de drainage et d'ébullition. Pour cela, nous étudions d'une part, des écoulements diphasiques eau-air isothermes et des écoulements d'eau et de vapeur d'eau avec changement de phase. Tout d'abord, nous présentons une modélisation macroscopique continue des transferts de masse et d'énergie dans les milieux poreux en tenant compte, lorsqu'ils existent, des changements de phase. Ce sont les principes de la thermodynamique des systèmes ouverts proches de l'équilibre qui ont servi de base à cette modélisation. Cette dernière débouche sur un système d'équations aux dérivées partielles non linéaires auxquelles s'ajoutent, des équations et des inéquations locales qui gèrent les transitions de phase. La discrétisation des équations est effectuée par la méthode des volumes finis et la résolution du système d'équations algébriques non linéaires obtenu est faite par la méthode de Newton. Afin de valider la modélisation proposée, différents problèmes physiques sont étudiés. Nous nous intéressons en premier lieu à des écoulements diphasiques eau-air isothermes. Dans une première étape, nous étudions la resaturation d'une barrière ouvragée par une barrière géologique, cela correspond à la première phase de la vie d'un ouvrage de stockage de déchets nucléaires. Dans une seconde étape, nous étudions le drainage d'une colonne poreuse initialement saturé d'eau. Nous montrons comment il est possible à partir d'un modèle simplifié, d'identifier la pression capillaire et la perméabilité relative de l'air. Des comparaisons entre les simulations numériques et des mesures d'expériences de laboratoire, obtenu par IRM, sont également proposées. Nous nous intéressons ensuite à l'apparition d'une phase vapeur dans un milieu poreux initialement saturé d'eau. Deux exemples d'applications sont traités : l'ébullition dans une colonne poreuse verticale chauffée par le bas et l'ébullition dans un milieu poreux de grande échelle. Pour ces deux cas, des résultats expérimentaux sont disponibles. Nous montrons que les courbes de perméabilité relative et de pression capillaire évaluées pour le couple eau-air doivent être largement corrigées dans la modélisation des écoulements diphasiques eau-vapeur d'eau. De plus, une solution analytique originale a été obtenue dans un cas simplifié du problème de Stefan et la comparaison entre les résultats numériques et la solution analytique a montré un bon accord. Les différentes confrontations entre les résultats numériques et les résultats expérimentaux montrent que la modélisation proposée est capable de représenter les phénomènes physiques de façon satisfaisante, tant du point de vue de l'imbibition et du drainage isothermes que de l'ébullition. Les schémas numériques se sont révélés être d'une grande robustesse ; ils se sont montrés parfaitement adaptés au suivi de la propagation de la frontière mobile entre les zones diphasique et monophasique