Etudes microstructurales d'oxydes désordonnés et modélisation de leurs propriétés thermiques
Auteur / Autrice : | Mathieu Fèvre |
Direction : | Alphonse Finel |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance en 2003 |
Etablissement(s) : | Paris 11 |
Mots clés
Résumé
Cette thèse concerne la modélisation d'oxydes fortement désordonnés à l'aide de simulations numériques de type Monte Carlo et Dynamique Moléculaire, en relation avec des mesures d'ordre à courte distance par diffusion diffuse de rayons X et de neutrons. Les oxydes à base de zircone sont caractérisés par une cinétique de diffusion très lente pour les cations et rapide pour les anions. Comme ce sont des matériaux ioniques, les interactions dominantes sont des interactions électrostatiques à longue portée. Des mesures d'ordre local ont montré que les atomes ne sont pas disposés au hasard dans le système: il existe donc de fortes corrélations chimiques en plus des distorsions de réseau introduites par la présence de lacunes structurelles. La technique de Dynamique Moléculaire hors d'équilibre (NEMD) a été utilisée pour calculer la conductivité thermique à partir des configurations atomiques. Cependant, elle ne peut suivre les mouvements des atomes que durant quelques nanosecondes. C'est pourquoi, afin d'améliorer la description des propriétés microstructurales et d'analyser l'effet de l'ordre local sur la conductivité thermique, nous avons développé un code de calcul de type Monte Carlo traitant aussi bien des effets élastiques que des effets chimiques et adapté à des solides ioniques. La confrontation de l'ordre à courte distance reproduit dans les simulations numériques avec celui mesuré par diffusion diffuse a montré un très bon accord simulations-expériences ainsi que la nécessité d'utiliser des simulations Monte Carlo afin rendre compte de la mise en ordre locale des défauts notamment à forte concentration en dopant. D'autre part, les résultats des calculs de conductivité thermique se sont révélés en excellent accord avec les mesures, puisque que la différence entre valeurs calculées et valeurs mesurées est inférieure à 20%. Enfin, l'influence de l'ordre local sur le comportement de la conductivité a été analysée numériquement et expérimentalement.