Thèse soutenue

Structure géométrique des parois en micromagnétisme et des ondes de choc de solutions de lois de conservation scalaires

FR
Auteur / Autrice : Myriam Lecumberry
Direction : Tristan RivièreCatherine Bolley
Type : Thèse de doctorat
Discipline(s) : Mathématiques et applications
Date : Soutenance en 2003
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : École doctorale sciences et technologies de l'information et des matériaux (Nantes)
Partenaire(s) de recherche : Autre partenaire : Université de Nantes. Faculté des sciences et des techniques

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Le micromagnétisme est l'étude de la magnétisation spontanée dans les matériaux ferromagnétiques. Cette magnétisation, de norme constante, est soumise à une énergie libre. Nous étudions les configurations limites admissibles de la magnétisation dans certains régimes asymptotiques. Les premiers résultats présentés concernent la structure géométrique des parois des configurations limites d'un modèle micromagnétique en deux dimensions. La similarité entre le problème micromagnétique et les lois de conservation scalaires nous permet d'obtenir, par la même méthode, un résultat sur la structure des ondes de choc de certaines solutions d'une loi de conservation scalaire en une dimension d'espace. Enfin, nous donnons une formulation cinétique du problème mathématique lié à un modèle micromagnétique en trois dimensions et nous terminons par un résultat de régularisation pour les moyennes en vitesse des solutions d'une équation cinétique linéaire.