Imagerie beta et neutron à l'aide d'un détecteur Micromegas à lecture optique
Auteur / Autrice : | Antoine Cools |
Direction : | Esther Ferrer-Ribas, Thomas Papaevangelou |
Type : | Thèse de doctorat |
Discipline(s) : | Physique des particules |
Date : | Soutenance le 20/09/2024 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Particules, Hadrons, Énergie et Noyau : Instrumentation, Imagerie, Cosmos et Simulat |
Partenaire(s) de recherche : | Laboratoire : Département d'Électronique, des détecteurs et d'informatique pour la physique (Gif-sur-Yvette, Essonne ; 2017-....) |
Référent : Faculté des sciences d'Orsay | |
graduate school : Université Paris-Saclay. Graduate School Physique (2020-....) | |
Jury : | Président / Présidente : Laurent Serin |
Examinateurs / Examinatrices : Dominique Thers, Konstantinos Nikolopoulos, Pawel Majewski, Maria Diakaki | |
Rapporteur / Rapporteuse : Dominique Thers, Konstantinos Nikolopoulos |
Mots clés
Résumé
Les détecteurs gazeux ont démontré, au cours de ces dernières décennies, leur haute performance pour l'imagerie de particules radioactives, atteignant des résolutions spatiales inférieures à 100 µm. Les propriétés scintillantes de certains mélanges gazeux, combinées au gain important des détecteurs gazeux et à l'usage d'une caméra à bas bruit électronique, ont permis d'utiliser la lumière scintillée pour l'imagerie. Cette approche permet d'obtenir une large surface de détection et une haute résolution spatiale tout en réalisant l'imagerie en temps réel à un coût par pixel réduit, avec une faible complexité d'analyse des données. Les principaux objectifs de cette thèse sont d'optimiser la résolution spatiale ainsi que la sensibilité du détecteur, soit par une méthode d'acquisition ''événement par événement'' avec des temps d'acquisition d'image courts, soit par ''intégration'' avec des temps d'acquisition longs.Un détecteur Micromegas en verre innovant pour la lecture optique a été développé, tirant parti de la haute résolution spatiale inhérente au détecteur Micromegas.L'adaptabilité du gain du détecteur Micromegas liée au mécanisme d'amplification par avalanche, lui permet de couvrir une large gamme de flux et d'énergies de particules. Durant cette thèse, des mesures d'imagerie ont été réalisées à l'aide de sources avec des niveaux de radioactivité inférieurs à un Becquerel et des énergies de quelques keV, jusqu'à des flux caractéristiques d'un synchrotron et d'une source de spallation, avec des énergies dépassant le MeV.Le rendement lumineux du détecteur a été étudié pour différents mélanges gazeux et pour diverses valeurs de gain sous irradiation aux rayons-X afin d'optimiser la sensibilité du détecteur. L'homogénéité et la précision de la réponse du détecteur ont été caractérisées par radiographie à rayons-X. La Fonction d'Étalement du Point (PSF) du Micromegas à lecture optique a été mesurée à l'aide d'un faisceau de rayons-X parallèles de quelques microns d'épaisseur, générés par le rayonnement synchrotron. Cette mesure a permis de déterminer la résolution spatiale du détecteur pour différentes configurations et d'identifier et de quantifier les effets qui rentrent en jeux. L'impact de la microgrille et des piliers sur la réponse en scintillation du détecteur a également été observé et quantifié.Deux applications ont été choisies afin d'illustrer le potentiel du Micromegas à lecture optique: l'autoradiographie pour la quantification d'échantillons tritiés de très faible activitié et la radiographie neutronique à haute résolution en environnement hautement radioactif.L'autoradiographie et le comptage radioactif de rayonnements beta faiblement énergétiques ont été réalisés avec des échantillons de glucose tritié. Des activités inférieures à un Becquerel ont été mesurées avec précision et simultanément sur un grand nombre d'échantillons tout en assurant une reconstruction précise de leur position. Ce travail valide la possibilité de quantifier la concentration de médicaments anticancéreux à l'échelle de cellules tumorales uniques.Enfin, l'utilisation du Micromegas à lecture optique pour la neutronographie a été démontrée en utilisant une source de spallation produisant des neutrons thermiques à un flux d'environ 10⁸ n. s⁻¹cm⁻ ² mA⁻¹. L'uniformité de la réponse du détecteur a été étudiée, et les effets de la diffusion et du parcours moyen des particules dans le gaz sur la netteté de l'image ont été mesurés et comparés à une simulation. Une résolution spatiale de l'ordre de 400 µm a été obtenue en utilisant une amplification à double étages au sein du détecteur Micromegas.