Thèse de doctorat en Mathématiques
Sous la direction de Vilmos Komornik et de Antoine Henrot.
Soutenue en 2002
à Strasbourg 1 .
Cette thèse porte sur des aspects théoriques et numériques de l'optimisation de forme ainsi que sur la stabilisation de fonctions solutions d'équations aux dérivées partielles. Dans la première partie, on s'intéresse à la minimisation des valeurs propres du laplacien avec conditions aux limites de Dirichlet. On étudie plus particulièrement la minimisation de la seconde valeur propre du laplacien sous contraintes de volume et de convexité. Après avoir démontré certaines propriétés qualitatives d'un ouvert optimal (régularité minimale et maximale, description géométrique du bord), nous répondons à une question posée par Troesh en 1973 : le stade (enveloppe convexe de deux disques tangents de mêmes rayons) n'est pas un ouvert optimal pour ce problème d'optimisation. Dans un deuxième chapitre, nous présentons différents résultats numériques ayant trait à la minimisation d'une valeur propre de rang donné. Dans un second temps, nous exposons certaines propriétés qualitatives d'un ensemble solution d'un problème de transport optimal. Là encore, ce travail est complété par des illustrations numériques obtenues à l'aide d'un algorithme de type stochastique. Le travail de la dernière partie est consacré à la stabilisation rapide de l'équation des ondes par des méthodes d'analyse non harmonique. Nous y présentons aussi un nouveau résultat de monotonie concernant des suites de zéros des dérivées de fonctions de Bessel.
Pas de résumé disponible.
Cette thèse a donné lieu à une publication en 2002 par Institut de recherche mathématique avancée à Strasbourg
Quelques résultats en optimisation de forme et stabilisation
Cette thèse a donné lieu à une publication en 2003 par [CCSD] à Villeurbanne
Quelques résultats en optimisation de forme et stabilisation