Thèse soutenue

Modélisation physique d'instruments de musique en systèmes dynamiques et inversion

FR  |  
EN
Auteur / Autrice : Thomas Hélie
Direction : Xavier Rodet
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance en 2002
Etablissement(s) : Paris 11

Résumé

FR  |  
EN

Notre travail de thèse porte sur la modélisation et l'inversion "son/geste instrumental" d'instruments de musique, avec comme application type les cuivres et la production de la voix. La modélisation physique a un grand intérêt pour la synthèse sonore puisqu'elle donne non seulement le son mais aussi le comportement de l'instrument (attaques, transitoires, fausses notes, etc. ). Pour ces raisons, la difficulté à jouer des instruments virtuels est la même que pour l'instrument réel. La difficulté du contrôle de ces modèles amène donc la question de l'inversion : comment dois-je contrôler mon modèle pour obtenir ce son cible que ce musicien a obtenu avec son vrai instrument? Pour traiter cette problématique de front, nous indiquons de quelle manière les modèles de synthèse et les procédés d'inversion doivent être pensés simuletanément. Notre thèse présente donc une série de travaux visant à obtenir des objets mathématiques aussi simples que possibles et qui possèdent de telles propriétés. Le problème de l'excitateur (lèvres, anches, etc. . ) a été traité dans le DEA, celui du résonateur (décrire la propagation dans un tube à section variable et son rayonnement) est donc l'objet principal de ce travail de thèse. En première partie, nous établissons un modèle 1D nouveau de propagation acoustique dans les tubes à symétrie axiale à variation de section lente. Ce modèle permet de prendre en compte par exemple la mobilité des parois (cas adapté au conduit vocal), ou encore la présence de pertes visco-thermiques (qui fait intervenir des dérivées fractionnaires). Pour ce dernier cas, il est possible de représenter le guide entier par la concaténation de systèmes entrée-sortie quo-dripôlaires associés à des tronçons de tubes localement adaptés à la géométrie du guide. Les fonctions de transfert étant trop complexes pour permettre une simulation temporelle à faible coût, nous proposons deux méthodes pour les approcher par des systèmes différentiels linéaires d'ordre fini à retard. Ces méthodes reposent sur les séries divergentes tronquées et la théorie des représentations diffusives d'opérateurs pseudo-différentiels, respectivement. En deuxième partie, un modèle nouveau de rayonnement acoustique de pavillon tenant compte de la courbure du front d'onde est développé et utilisé comme condition de frontière de l'instrument. Les résultats de ces travaux ont permis l'étude des cuivres et partiellement du conduit vocal.