La décomposition de Kato pour les opérateurs du type T-LambdaS et la propriété P(S)
FR |
EN
Auteur / Autrice : | Dominique Gagnage |
Direction : | Mostafa Mbekhta |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques pures |
Date : | Soutenance en 2002 |
Etablissement(s) : | Lille 1 |
Mots clés
FR
Mots clés contrôlés
Résumé
FR
Ce travail se situe dans le cadre de la théorie des opérateurs dans des espaces de Banach. Plus précisément, on s'intéresse à une classe d'opérateurs introduits par M. A. Kaashoek comme une généralisation des opérateurs semi-Fredholm : les opérateurs ayant la propriété P(S). On prouve que la propriété P(S) est équivalente à l'existence d'une décomposition de Kato de type fini. De plus, la propriété P(S) est stable sous perturbation de dimension finie, ce qui généralise une propriété importante des opérateurs semi-Fredholm. Il est également montré que la décomposition de Kato est unique à isomorphismes près. Des résultats concernant les différents spectres généralisent ceux relatifs aux opérateurs semi-Fredholm.