Thèse soutenue

Simulation numérique par éléments finis des grandes déformations des sols

FR  |  
EN
Auteur / Autrice : Nicolas Renon
Direction : Pierre MontmitonnetPatrick Laborde
Type : Thèse de doctorat
Discipline(s) : Mécanique Numérique
Date : Soutenance en 2002
Etablissement(s) : Paris, ENMP
Partenaire(s) de recherche : Laboratoire : Laboratoire mathématiques pour l'industrie et la physique (Toulouse)

Résumé

FR  |  
EN

Le déminage mécanique consiste à scarifier le sol avec une '' charrue '', outil formé d'une lame en V munie de plusieurs dents, poussée par un engin : les dents déstructurent le sol et le font remonter devant la lame qui l'évacue sur le côté avec les mines qu'il contient. L'objectif de nos travaux est de mettre en œuvre la simulation numérique par éléments finis du problème fortement non linéaire issu de la modélisation de la scarification du sol. Le code d'éléments finis implicite Forge3®, dédié à la mise en forme des métaux, a été choisi comme support numérique. Il permet de prendre en compte les grandes déformations, en particulier à l'aide de son remaillage automatique. Nous avons dans un premier temps implanté dans ce code deux modèles élastoplastiques de comportement, l'un incompressible réservé aux sols fins saturés, purement cohésifs, l'autre compressible, fondé sur la notion d'état critique, pour les matériaux purement frottants ou cohésifs et frottants. Ces modèles adoucissants sont intégrés par un schéma de retour radial généralisé, au sein d'une formulation implicite du problème aux limites. Nous montrons que la matrice de raideur est non symétrique dans le cas compressible et que la symétrisation du système ne conduit pas à une approche robuste. Nous avons donc importé et testé un solveur itératif non-symétrique : Bi-CGSTAB. Nous avons validé la programmation de ces modèles sur des essais triaxiaux. Pour les comportements adoucissants, on constate des oscillations dans la relation contrainte/déformation passé le pic de contrainte. Ces difficultés numériques sont traitées par linéarisation et régularisation. Dans un deuxième temps, nous avons mis en œuvre des simulations de scarification pour différents niveaux de complexité : une dent seule, une dent + une tranche de lame, plusieurs dents, en faisant suffisamment avancer l'outil pour atteindre le régime stationnaire ; cela se révèle d'autant plus long que l'outil est large, ce qui nous amène au calcul très intensif. L'influence de paramètres géométriques comme l'inclinaison de la dent ou l'angle d'étrave du système a été mise en évidence, elle est qualitativement conforme aux observations expérimentales. L'étude de l'influence des paramètres des modèles de comportement montre la prépondérance de ceux liés à l'état critique, i. E. Aux propriétés mécaniques après de grandes déformations. Enfin nous avons validé qualitativement le code en termes de modes d'écoulements et de répartition des efforts pour des outils multi-dents. La comparaison quantitative des efforts reste à affiner en revenant sur le comportement choisi et son implémentation.