Thèse soutenue

Apprentissage, réseaux de neurones et applications

FR
Auteur / Autrice : Olivier Teytaud
Direction : Hélène Paugam-Moisy
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance en 2001
Etablissement(s) : Lyon 2

Mots clés

FR

Mots clés contrôlés

Résumé

FR

Les fondements théoriques de l'apprentissage sont en grande partie posés. Comme la calculabilité est venue à maturité en s'orientant vers la complexité, l'apprentissage mûrit face à des résultats négatifs forts qui rendent sans espoir la quête d'algorithmes universels, efficaces pour toute donnée. Vraisemblablement les grandes avancées à venir seront (a) soit dans des domaines connexes où l'étude théorique a moins été poussée, (b) soit moins philosophiques et plus concrètes (théorique à préoccupations algorithmiques, représentation de données structurées, implémentation physique, modularité), soit enfin (c) dans la modélisation biologique. Cette thèse résume (et essaie modestement de compléter) les avancées théoriques statistiques, des points de vue successifs des cas où l'apprentissage est difficile (i. E. , où l'on sort du cadre iid sans bruit avec a priori de VC-dimension finie), des utilisations non-standards de la VC-théorie (non-supervisé, extraction de règles : c'est le (a) ci-dessus), puis du passage au concret avec le passage aux préoccupations algorithmiques (validité des approximations dans les Supports Vector Machines, efficacité des algorithmes de Gibbs quoique l'étude soit très incomplète, plus proches voisins rapides d'un point de vue expérimental représentation de données structurées images ou textes - tout cela est le (b)) et la modélisation biologique (c)