Thèse soutenue

Représentations structurelles de signaux audiophoniques : méthodes hybrides pour des applications à la compression

FR
Auteur / Autrice : Laurent Daudet
Direction : Richard Kronland-MartinetBruno Torrésani
Type : Thèse de doctorat
Discipline(s) : Physique mathématique. Physique des particules et modélisation
Date : Soutenance en 2000
Etablissement(s) : Aix-Marseille 1
Partenaire(s) de recherche : autre partenaire : Université de Provence. Section sciences

Résumé

FR

La recherche d'une bonne représentation numérique des sons musicaux est actuellement un enjeu important pour l'industrie musicale, notamment en vue du stockage et de la transmission. Nous désirons une représentation qui soit à la fois précise (fidèle d'un point de vue perceptif) et efficace (qui utilise la quantité de données la plus faible possible, en gardant une complexité faible). Nous envisagerons donc des modèles de sons d'autant plus précis que la classe de sons envisagée est étroite. Nous illustrons ici ce concept par deux exemples de modèles sonores. Le premier, basé sur des modèles de signaux, permet de représenter les sons de manière complètement générale, en les décomposant en trois couches dites partie tonale, transitoires et partie stochastique. Pour une grande majorité de sons, nous montrons que ces représentations hybrides sont particulièrement efficaces, les trois couches étant par construction compactes dans certaines bases. L'idée sous-jacente est la recherche de structures dans la localisation des coefficients significatifs. Outre l'application à la compression, ces représentations permettent une implémentation efficace de certains effets sonores et modèles psychoacoustiques. La seconde application permet, dans le cas où l'on ne se préoccupe que d'un seul instrument, d'appuyer nos modèles sur les mécaniques physiques de production sonore. Plus précisément, nous présentons un modèle de resynthèse des vibrations de cordes de piano, basé sur le formalisme des guides d'onde digitaux. Nous montrons qu'il est nécessaire d'envisager le couplage des vibrations dans les deux directions transverses, et que celui-ci peut être implémenté par un couplage linéaire et complexe, dépendant de la fréquence. Nous montrons que les paramètres du modèle peuvent être extraits de signaux expérimentaux. Ce type de modèles "physiques" permet un contrôle inatteignable par la majorité des synthétiseurs commerciaux.