Thèse soutenue

Courbes pseudo-holomorphes et transversalité : la conjecture d'Arnold pour les sous-variétés lagrangiennes fortement négatives

FR
Auteur / Autrice : Laurent Lazzarini
Direction : Daniel DarletPierre Pansu
Type : Thèse de doctorat
Discipline(s) : Sciences et techniques communes
Date : Soutenance en 1999
Etablissement(s) : Nancy 1
Partenaire(s) de recherche : Autre partenaire : Université Henri Poincaré Nancy 1. Faculté des sciences et techniques

Résumé

FR  |  
EN

L'objet de ce travail est de montrer comment une courbe pseudo-holomorphe dans une variété presque complexe de dimension quelconque se factorise en une courbe ayant au moins un point d'injectivite, point crucial pour obtenir des espaces de modules lisses. Le cas facile des courbes fermées est d'abord étudié, puis vient celui des courbes a bord dans une sous-variété totalement réelle. Il apparaît que contrairement a une courbe fermée, une courbe à bord ne peut pas toujours se factoriser en une courbe injective quelque part et a bord dans la même sous-variété lagrangienne. Cependant, il est toujours possible d'extraire de son image une telle courbe. De plus, si la courbe initiale est un disque, on peut exiger que la courbe extraite soit aussi un disque. A titre d'illustration, on démontre sous certaines hypothèses topologiques une version de la conjecture d'Arnold pour l'intersection d'une sous-variété lagrangienne dans une variété symplectique avec ses isotopies hamiltoniennes.