Thèse de doctorat en Sciences. Mathématiques
Sous la direction de Jean-Marie Morvan.
Soutenue en 1998
à Lyon 1 .
Le jury était composé de Jean-Marie Morvan.
La géométrie rienmannienne des sous-variétés a connu ces cinquante dernières années un essor considérable, essentiellement dans le cas compact. Cette thèse a pour but de développer des outils consacrés à l'étude des sous-variétés riemanniennes complètes. Ces outils sont proches de ceux développés par Bochner et Lichnérowicz. Ils sont particulièrement adaptés aux problèmes de rigidité de certains types de sous-variétés complètes : celles qui sont à courbure moyenne constante dans un espace hyperbolique. Il est ainsi possible d'obtenir un théorème de classification de ces sous-variétés. D'autres applications sont données pour des sous-variétés totalement réelles des espaces projectifs complexes
Pas de résumé disponible.