Thèse soutenue

Méthodologie de modélisation et de commande par réseaux de neurones pour des dispositifs électrotechniques non linéaires

FR  |  
EN
Auteur / Autrice : Christophe Forgez
Direction : Jean-Paul Hautier
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance en 1998
Etablissement(s) : Lille 1

Mots clés

FR

Mots clés contrôlés

Résumé

FR

Le domaine de l'electrotechnique recele differents types de phenomenes non lineaires de par la construction et la constitution des machines ou leurs alimentations. Bon nombre de methodes capables de les traiter existent, mais souffrent de ne pas apporter de solutions universelles tant en modelisation qu'en commande les travaux rassembles dans ce memoire proposent un formalisme de modelisation et de commande de systemes electrotechniques en utilisant les reseaux artificiels de neurones. Nous nous sommes efforces d'appliquer les proprietes d'apprentissage des reseaux neuronaux a differents phenomenes rencontres en genie electrique, notamment en electromecanique et electromagnetisme, tout en evoquant leurs avantages et leurs limites. L'apprentissage permet de modeliser des caracteristiques lineaires, non lineaires ou discontinues, a partir d'echantillons de celles-ci, en utilisant des methodes d'optimisation non lineaires dont la plupart souffrent d'un cout exorbitant en temps de calculs. Pour pallier cet inconvenient majeur nous avons propose une methode dite d'initialisation basee sur une regression non lineaire. Celle ci permet entre autre d'optimiser la structure mathematique du reseau neuronal en fonction de la caracteristique a apprendre ce qui permet de reduire considerablement les temps d'apprentissage et d'augmenter la qualite de modelisation. Cette technique demontree et formalisee a ete mise en pratique sur differentes applications. Nous l'avons tout d'abord testee sur la modelisation d'inductances saturables ce qui a permis de soulever les problemes lies au cout et a la qualite des modeles. Au vue des bonnes performances, nous l'avons appliquee sur la modelisation de cycles majeurs d'hysteresis, puis sur des couples de charges mecaniques.