Thèse soutenue

Estimations paramétrique et non paramétrique des données manquantes : application à l'agro-climatologie

FR  |  
EN
Auteur / Autrice : Hatem Dellagi
Direction : Jean-Paul Benzécri
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 1994
Etablissement(s) : Paris 6

Résumé

FR

Dans ce travail nous proposons deux méthodes d'estimation des données manquantes. Dans le cas de l'estimation paramétrique et afin de résoudre le problème par la prévision, nous exploitons l'estimateur décale (E. D) de la partie autorégressive d'un modèle ARMA scalaire pour estimer la matrice de covariance In dont la consistance forte est prouvée sous des conditions ayant l'avantage de s'exprimer en fonction des trajectoires et identifier les coefficients de la partie moyenne mobile et la variance du bruit blanc. En analyse des correspondances et afin d'estimer les données manquantes d'un tableau de correspondance, le problème se résout complètement dans le cas d'une seule donnée manquante. L'existence est prouvée dans le cas où il y en a plusieurs, par contre l'unicité étant délicate, une combinaison linéaire entre les données manquantes est obtenue à partir de la formule de la trace dont la minimisation assure l'homogénéité du tableau de correspondance, nous établirons sous le même critère la reconstitution d'une donnée d'origine à partir du codage linéaire par morceaux