Propriétés globales de quelques équations d’évolution non linéaires du second ordre
Auteur / Autrice : | Philippe Souplet |
Direction : | Alain Haraux |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance en 1994 |
Etablissement(s) : | Paris 6 |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse comporte trois parties indépendantes. La première est consacrée à l’étude des solutions globales d’équations non linéaires dissipatives de type hyperbolique. On s’intéresse tout d’abord au cas autonome, pour lequel on montre, par une méthode topologique originale, l’existence de solutions exceptionnelles, qui sont globales sur toute la droite réelle tout en étant non bornées. Nous donnons ensuite des résultats de stabilité pour l'équation d’évolution générale. Ceux-ci sont valables par exemple dans le cas de l’équation des ondes dans un domaine borné, où la dissipation est une puissance de la vélocité. On sait déjà que la différence de deux solutions décroît comme une constante que multiplie une puissance négative du temps. Nous établissons des estimations précises sur la constante, qui dépend des énergies initiales comme une puissance supérieure à 1. Dans le cas de l’équation différentielle ordinaire périodique, nous montrons que la stabilité est en fait exponentielle en temps et nous précisons également le comportement des constantes. Nous prouvons enfin l’optimalité des constantes obtenues, en utilisant l’existence de solutions globales sur toute la droite réelle. Dans la deuxième partie, nous étudions l’unicité des solutions antipériodiques pour des équations d’évolutions abstraites du second plan. Dans un premier temps, nous montrons qu’il y a unicité des solutions antipériodiques, lorsque la non-linéarité est assez petite. On donne différentes applications de ce résultat pour des systèmes différentiels et pour des équations d’ondes dans des domaines bornés, où nous explicitons des conditions suffisantes précises d’unicité. Nous montrons que ce résultat est spécifique au cadre antipériodique et qu’il ne peut pas s’étendre au cas général des solutions périodiques. Dans un deuxième temps, nous montrons que l’unicité des solutions antipériodiques n’est pas vraie en général sans hypothèse sur la taille de la non-linéarité. Nous construisons à cet effet des contre exemples très réguliers pour une équation des ondes et pour une équation différentielle ordinaire avec non-linéarité cubique, résolvant ainsi un problème ouvert depuis 1989. Dans la troisième partie, nous montrons d’abord le caractère non global des solutions pour une classe d'inégalités différentielles. En appliquant ensuite ce résultat et la méthode de convexité, nous obtenons l’explosion en temps fini des solutions de données initiales positives, pour des équations d’ondes où le terme de source est en compétition avec un terme de dissipation. Une autre application concerne une équation de la chaleur avec un terme de mémoire de type intégral. Les résultats sur l’équation des ondes sont complémentaires de ceux obtenus récemment par Georgiev et Todorova (1992), en utilisant la méthode d’énergie.