Thèse soutenue

Stimulation de la réduction électrocatalytique des nitrates par des liquides ioniques immobilisés

FR  |  
EN
Auteur / Autrice : Yanis Adjez
Direction : Carlos Manuel Sánchez-Sánchez
Type : Thèse de doctorat
Discipline(s) : Chimie Physique
Date : Soutenance le 26/09/2024
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interfaces et systèmes électrochimiques (Paris ; 1967-....)
Jury : Président / Présidente : Jalal Ghilane
Rapporteur / Rapporteuse : Christine Cachet-Vivier, Christelle Gautier, Christine Cachet-Vivier

Résumé

FR  |  
EN

La pollution de l'eau par les nitrates représente un défi environnemental majeur et constitue l'une des dix violations les plus courantes de la qualité de l'eau dans le monde. Ce défi offre une opportunité pour l'économie circulaire, car l'électrolyse des nitrates a été proposée comme une méthode durable pour la valorisation des effluents contaminés par les nitrates grâce à la production décentralisée et simultanée d'ammoniac (un produit chimique de base). En particulier, la réduction électrochimique des nitrates (REN) est une stratégie prometteuse et durable pour résoudre le problème critique de la pollution des sources d'eau par les nitrates. Plusieurs matériaux abondants sur Terre, tels que le cuivre et l'étain, ont été proposés comme matériaux électrocatalytiques adaptés pour la REN. Jusqu'à présent, la plupart des études électrochimiques fondamentales ont été menées dans des conditions potentiostatiques. En revanche, cette étude présente une évaluation de la REN dans des conditions galvanostatiques pour atteindre des conditions opérationnelles plus représentatives pour des systèmes ingénierisés de plus grande envergure. Cependant, cela provoque l'apparition de la réaction concomitante de dégagement de l'hydrogène (HER), qui se produit à un potentiel thermodynamique similaire à celui de la REN. Ainsi, l'efficacité faradique de la REN diminue considérablement dans des conditions galvanostatiques réalistes en raison de la concurrence avec la HER. Ce projet aborde ce défi fondamental en électrocatalyse et propose une nouvelle stratégie basée sur l'immobilisation de molécules ioniques à base d'imidazolium sur la surface de la cathode pour inhiber sélectivement la HER et améliorer la REN. Notamment, cette recherche explore une gamme de matériaux de cathodiques hybrides, y compris des électrodes à base de carbone et de métal sous forme de plaques 2D et de mousses 3D, reconnues pour leur potentiel dans les applications réelles de la REN. Le succès de l'immobilisation de la couche organique ionique sur les cathodes a été confirmé par différentes techniques de caractérisation physico-chimiques et par une évaluation subséquente de l'activité et de la sélectivité électrocatalytiques, démontrant une sélectivité et une efficacité faradique améliorées pour la production d'ammoniac sur les cathodes hybrides, deux fois supérieures à celles du matériau d'électrode nu pour la REN dans les mêmes conditions expérimentales.