Thèse soutenue

Compréhension des mécanismes d’inhibition de la corrosion du patrimoine métallique cuivreux par une approche physicochimique multi-échelle

FR  |  
EN
Auteur / Autrice : Erika Ferrari
Direction : Delphine NeffFlorence Mercier-Bion
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 14/12/2021
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes
Partenaire(s) de recherche : référent : Faculté des sciences d'Orsay
graduate school : Université Paris-Saclay. Graduate School Chimie (2020-....)
Laboratoire : Laboratoire Archéomatériaux et Prévision de l'Altération (Gif sur Yvette) - Nanosciences et innovation pour les matériaux, la biomédecine et l'énergie (Gif-Sur-Yvette, Essonne ; 2015-....)
Jury : Président / Présidente : Ludovic Bellot-Gurlet
Examinateurs / Examinatrices : Emilio Cano, Tadeja Kosec, Philippe Dillmann
Rapporteurs / Rapporteuses : Emilio Cano, Tadeja Kosec

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le patrimoine métallique est un témoin culturel de notre passé et, pour cette raison, sa préservation et sa transmission aux générations futures sont importantes. Plusieurs stratégies sont utilisées pour la protection du patrimoine cuivreux exposée en extérieur, dont l’utilisation des inhibiteurs de corrosion organiques. Les inhibiteurs utilisés pour le patrimoine sont généralement empruntés au domaine de l’industrie. Cependant, l’état de surface du métal, couvert par des couches de produits de corrosion complexes, et le protocole d’application des inhibiteurs diffèrent considérablement de l’application industrielle.La présente étude porte spécifiquement sur les inhibiteurs de corrosion pour la conservation des artefacts exposés à base de cuivre par une approche physico-chimique innovante. L'approche prend en compte la complexité de la couche de corrosion étudiée : une plaque de cuivre naturellement corrodée, représentative de la corrosion extérieure à long terme a été choisie. Pour l'étude, trois molécules organiques, caractérisées par des fonctions chimiques différentes ont été sélectionnées comme inhibiteurs de test : le benzotriazole (BTAH), un composé azolé, employé en conservation, dont l'efficacité est débattue et l’utilisation déconseillée en raison de sa toxicité ; l'acide décanoïque (HC10) un acide gras à longue chaîne qui a été proposé comme traitement pour les objets patrimoniaux ; l'acide benzotriazole-5-carboxylique (5CBT), un composé à fonctions mixtes azole-carboxyliques. La réactivité des inhibiteurs avec des phases minérales synthétiques représentatives des produits de corrosion ainsi que des échantillons corrodés anciens (100 ans) avant et après 6 mois d'exposition extérieure ont été étudiées en combinant des observations à l'échelle nanométrique (MET, FIB-tomographie) à celles obtenues à l'échelle microscopique (Raman, MEB-EDS) et des observations globales/globales (couleur, tension de surface, XRD). Des expériences complémentaires en milieux marqués ont permis d'étudier les évolutions de perméabilité (immersion en D₂O) et de comportement passif (immersion KBr). Deux mécanismes réactionnels ont été observés et une relation avec l'efficacité et la durabilité de l'inhibition est proposée. Les molécules caractérisées par la fonction azole (BTAH et 5CBT) réagissent selon un mécanisme d'adsorption-précipitation formant un complexe amorphe adsorbé (film nanométrique) sur la phase minérale substrat (cuprite et brochantite). Les deux traitements sur les couches anciennes de corrosion diffèrent par leur profondeur de pénétration, la formation du complexe BTAH étant détectée jusqu'à la couche interne de cuprite, tandis que la complexation 5CBT n'est observée que dans la partie externe de la brochantite. Ceci a un impact sur la perméabilité de l'eau et la passivité pour les traitements au BTAH qui montrent les meilleurs résultats, et suggère une formation de complexe Cu-BTA sur la partie externe de la couche de cuprite dans ce dernier traitement. La fonction carboxylique dans HC10 conduit à la précipitation du décanoate de cuivre par un mécanisme de dissolution-précipitation. Des cristaux de décanoate se forment sur la surface externe de brochantite : cela confère une quasi-superhydrophobie à l'échantillon après traitement. Cependant, le manque de liaison chimique forte entre le précipité et la surface induit la perte de la couche hydrophobe déposée en surface après 6 mois d'exposition à l'extérieur.En plus de ces résultats phénoménologiques, une nouvelle méthodologie basée sur l'expérience KBr pour tester les inhibiteurs des artefacts corrodés par le cuivre est également proposée.