Thèse soutenue

Modélisation et optimisation d'un rotor à pales flexibles

FR  |  
EN
Auteur / Autrice : Eduardo Duran-Venegas
Direction : Stéphane Le DizèsChristophe Eloy
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'ingénieur
Date : Soutenance le 05/06/2019
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole doctorale Sciences pour l'Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE) (Marseille)
Jury : Président / Présidente : Sabine Ortiz Clerc
Examinateurs / Examinatrices : Luis Parras Anguita, Ivan Delbende
Rapporteurs / Rapporteuses : Philippe Chatelain, François Gallaire

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Historiquement, les rotors ont été développés pour la propulsion et la génération d’énergie. Pendant des années, grands efforts de recherche ont été fournis pour les éoliennes et les hélicoptères. Or, des nouvelles applications comme les drones nécessitent une recherche plus approfondie. La flexibilité du rotor et les conditions de fonctionnement particulières constituent un défi pour l'optimisation de leur design. Dans cette thèse, on propose un modèle fluide-structure qui prend en compte la flexibilité des pales dans des conditions de fonctionnement non-conventionnelles. Le modèle est suffisamment simple et robuste pour la réalisation d'études paramétriques extensives. Il comprend des modèles pour le sillage et la structure flexible du rotor. Deux modèles du sillage sont considérés: un modèle classique de Joukowski et un modèle généralisé. Dans le modèle classique, deux vortex sont émis par pale, l’un sur la pointe et l’autre sur l’axe. Dans le modèle généralisé, le tourbillon axial est décalé par rapport au centre. Une analyse de stabilité est réalisée pour les solutions dérivées avec le modèle classique. La nature convective/absolue de l’instabilité est étudiée pour différentes conditions de fonctionnement. Les solutions stationnaires du sillage sont utilisées pour calculer le champ de vitesse induit dans le plan rotor. Ainsi, à partir de la loi de Kutta-Joukowski et de la théorie des éléments de pale (BET), on peux déterminer les charges aérodynamiques exercés sur les pales. Le couplage du rotor avec son sillage est alors implémenté pour une configuration rigide. Finalement, la flexibilité de la pale est prise en compte à l’aide d’un modèle de poutre élastique