Thèse soutenue

Développement d'un nouveau modèle 3D in vitro pour évaluer le potentiel (géno)toxicité des nanomatériaux
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Jefferson de Oliveira Mallia
Direction : Sylvain BohicShareen DoakJean-Luc Ravanat
Type : Thèse de doctorat
Discipline(s) : Biotechnologie, instrumentation, signal et imagerie pour la biologie, la médecine et l'environnement
Date : Soutenance le 19/05/2020
Etablissement(s) : Université Grenoble Alpes en cotutelle avec University of Swansea (Swansea (GB))
Ecole(s) doctorale(s) : École doctorale ingénierie pour la santé, la cognition, l'environnement (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : European synchrotron radiation facility (Grenoble, Isère, France ; 1988-....) - Institute of Life Science (Royaume-uni) - Systèmes moléculaires et nanomatériaux pour l’énergie et la santé (Grenoble)
Equipe de recherche : Laboratoire Lésions des Acides Nucléiques
Jury : Président / Présidente : Catherine Thornton
Examinateurs / Examinatrices : Martin Clift, François Estève
Rapporteurs / Rapporteuses : Nicolas Foray, Francis L. Martin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le foie est le plus grand organe interne et joue un rôle important dans le maintien de l'équilibre homéostatique dans le corps. C'est également l'un des principaux sites d'accumulation de nanoparticules. Les sphéroïdes HepG2 ont été utilisés comme modèle in vitro pour évaluer la toxicité des nanoparticules (NP) d'oxyde de fer (magnétite, Fe3O4 et maghémite, γ-Fe2O3). Le développement des sphéroïdes HepG2 par la méthode des gouttes suspendues a été quantifié par l’évaluation de la viabilité cellulaire et de la morphologie des tissus des sphéroïdes générés à partir de 1000, 5000 et 10 000 cellules par goutte. Les sphéroïdes générés à partir de 5000 cellules par goutte avaient la configuration la plus optimale. La fonction hépatique a été évaluée par l'albumine, l'urée et l'aspartate transaminase, qui ont été exprimées à des concentrations physiologiquement pertinentes par le sphéroïde HepG2.La fluorescence des rayons X synchrotron (SXRF) a été utilisée pour évaluer la distribution des NP et l'homéostasie des métaux. Les études SXRF montrent une accumulation dépendante de la dose de NP dans les coupes transversales de tissu sphéroïde HepG2. Cette accumulation a également affecté l'homéostasie du fer en augmentant de manière significative les niveaux de cuivre intracellulaire. Lesconcentrations du calcium et du sélénium ont également augmenté en présence desNP, ces deux éléments pouvant être impliquées dans l'élimination des espèces réactives de l'oxygène (ROS). Le métabolisme du glucose s'est déplacé vers la respiration anaérobie en présence de NP, montrant l'effet Warburg. La microscopie électronique à transmission montre également la localisation intracellulaire des NP d'oxyde de fer. L'analyse des micronoyaux par blocage de la cytokinèse (CBMN) et l'électrophorèse en gel unicellulaire (comet) ont été utilisées pour évaluer la génotoxicité. Les deux NP ont induit une augmentation significative de la fréquence des micronoyaux. La coloration pan-centromérique a en outre indiqué que le principal mode d'action des dommages à l'ADN causés par les NP d'oxyde de fer était le clastogène. Les résultats comet n'ont montré aucune augmentation significative des pourcentages d'intensité de la queue.En conclusion, le modèle sphéroïde HepG2 est représentatif d'un foie in vivo en raison de sa capacité à imiter le métabolisme du glucose, la fonctionnalité du foie et les réponses à l'homéostasie des métaux. Les NP d'oxyde de fer amènent un métabolismedes sphéroïdes HepG2 anaérobie et perturbent l'homéostasie du fer, ce qui peut potentiellement générer la génération de ROS entraînant des lésions de l'ADN.