Prise en compte des contraintes de canal dans les schémas de codage vidéo conjoint du source-canal

par Shuo Zheng

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Marco Cagnazzo.

Le président du jury était Michèle Wigger.

Le jury était composé de Marco Cagnazzo, Michel Kieffer, Marc Leny, Jean-Marie Gorce.

Les rapporteurs étaient Aline Roumy, François-Xavier Coudoux.


  • Résumé

    Les schémas de Codage Vidéo Linéaire (CVL) inspirés de SoftCast ont émergé dans la dernière décennie comme une alternative aux schémas de codage vidéo classiques. Ces schémas de codage source-canal conjoint exploitent des résultats théoriques montrant qu’une transmission (quasi-)analogique est plus performante dans des situations de multicast que des schémas numériques lorsque les rapports signal-à-bruit des canaux (C-SNR) diffèrent d’un récepteur à l’autre. Dans ce contexte, les schémas de CVL permettent d’obtenir une qualité de vidéo décodée proportionnelle au C-SNR du récepteur.Une première contribution de cette thèse concerne l’optimisation de la matrice de précodage de canal pour une transmission de type OFDM de flux générés par un CVL lorsque les contraintes de puissance diffèrent d’un sous-canal à l’autre. Ce type de contrainte apparait en sur des canaux DSL, ou dans des dispositifs de transmission sur courant porteur en ligne (CPL). Cette thèse propose une solution optimale à ce problème de type multi-level water filling et nécessitant la solution d’un problème de type Structured Hermitian Inverse Eigenvalue. Trois algorithmes sous-optimaux de complexité réduite sont également proposés. Des nombreux résultats de simulation montrent que les algorithmes sous-optimaux ont des performances très proches de l’optimum et réduisent significativement le temps de codage. Le calcul de la matrice de précodage dans une situation de multicast est également abordé. Une seconde contribution principale consiste en la réduction de l’impact du bruit impulsif dans les CVL. Le problème de correction du bruit impulsif est formulé comme un problème d’estimation d’un vecteur creux. Un algorithme de type Fast Bayesian Matching Pursuit (FBMP) est adapté au contexte CVL. Cette approche nécessite de réserver des sous-canaux pour la correction du bruit impulsif, entrainant une diminution de la qualité vidéo en l'absence de bruit impulsif. Un modèle phénoménologique (MP) est proposé pour décrire l’erreur résiduelle après correction du bruit impulsif. Ce modèle permet de d’optimiser le nombre de sous-canaux à réserver en fonction des caractéristiques du bruit impulsif. Les résultats de simulation montrent que le schéma proposé améliore considérablement les performances lorsque le flux CVL est transmis sur un canal sujet à du bruit impulsif.

  • Titre traduit

    Accounting for channel constraints in joint source-channel video coding schemes


  • Résumé

    SoftCast based Linear Video Coding (LVC) schemes have been emerged in the last decade as a quasi analog joint-source-channel alternative to classical video coding schemes. Theoretical analyses have shown that analog coding is better than digital coding in a multicast scenario when the channel signal-to-noise ratios (C-SNR) differ among receivers. LVC schemes provide in such context a decoded video quality at different receivers proportional to their C-SNR.This thesis considers first the channel precoding and decoding matrix design problem for LVC schemes under a per-subchannel power constraint. Such constraint is found, e.g., on Power Line Telecommunication (PLT) channels and is similar to per-antenna power constraints in multi-antenna transmission system. An optimal design approach is proposed, involving a multi-level water filling algorithm and the solution of a structured Hermitian Inverse Eigenvalue problem. Three lower-complexity alternative suboptimal algorithms are also proposed. Extensive experiments show that the suboptimal algorithms perform closely to the optimal one and can reduce significantly the complexity. The precoding matrix design in multicast situations also has been considered.A second main contribution consists in an impulse noise mitigation approach for LVC schemes. Impulse noise identification and correction can be formulated as a sparse vector recovery problem. A Fast Bayesian Matching Pursuit (FBMP) algorithm is adapted to LVC schemes. Subchannels provisioning for impulse noise mitigation is necessary, leading to a nominal video quality decrease in absence of impulse noise. A phenomenological model (PM) is proposed to describe the impulse noise correction residual. Using the PM model, an algorithm to evaluate the optimal number of subchannels to provision is proposed. Simulation results show that the proposed algorithms significantly improve the video quality when transmitted over channels prone to impulse noise.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Télécom Paris. Bibliothèque scientifique et technique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.