Thèse soutenue

Méthodes numériques pour l'estimation des fluctuations dans les matériaux multi-échelles et problèmes reliés

FR  |  
EN
Auteur / Autrice : Pierre-Loïk Rothé
Direction : Frédéric Legoll
Type : Thèse de doctorat
Discipline(s) : Sciences de l'ingénieur
Date : Soutenance le 12/12/2019
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Navier (Paris-Est) - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique / CERMICS - Laboratoire Navier / NAVIER UMR 8205
Jury : Président / Présidente : Sébastien Brisard
Examinateurs / Examinatrices : Frédéric Legoll, Anthony Nouy, Alexei Lozinski, Sonia Fliss, Julian Fischer
Rapporteurs / Rapporteuses : Anthony Nouy, Alexei Lozinski

Résumé

FR  |  
EN

Le travail de cette thèse a porté sur la simulation numérique des matériaux multi-échelles. On considère des matériaux hétérogènes dont les propriétés physiques ou mécaniques (conductivité thermique, tenseur d’élasticité, ...) varient à une échelle petite par rapport à la taille du matériau. La thèse s'articule en deux parties qui correspondent à deux aspects différents des problèmes multi-échelles.Dans la première partie, on se place dans le cadre de l'homogénéisation aléatoire et on s’intéresse à une question plus fine que la caractérisation d'un comportement moyen : on cherche à étudier les fluctuations de la réponse. Plus généralement, nous visons à comprendre : (i) quels paramètres de la distribution des coefficients du matériau à l'échelle fine affectent la distribution de la réponse à l'échelle macroscopique, et (ii) s’il est possible d’estimer cette distribution sans utiliser une méthode type Monte-Carlo, très couteuse. Sur le plan théorique, nous avons considéré un matériau faiblement aléatoire (micro-structure périodique avec ajout d’une perturbation aléatoire petite). Nous avons montré qu’en utilisant le correcteur standard issu de la théorie de l’homogénéisation aléatoire, nous sommes capables de calculer un tenseur Q qui gouverne complètement les fluctuations de la réponse. Ce tenseur, défini par une formule explicite, permet d’estimer la fluctuation de la réponse sans résoudre le problème fin pour de nombreuses réalisations. Une stratégie d’approximation numérique de ce tenseur a ensuite été développée et testée numériquement dans des cas plus généraux.Dans la deuxième partie de la thèse, on considère un matériau hétérogène déterministe fixé où les hypothèses classiques d'homogénéisation (périodicité, ...) ne sont pas vérifiées. Les méthodes de résolution standard type Éléments Finis donnent de mauvaises approximations. Pour pallier cette difficulté, la Méthode des Éléments Finis Multi-échelles (MsFEM) a été introduite il y une vingtaine d'année. La méthode MsFEM se décompose en deux étapes : (i) créer un espace d'approximation grossier engendré par les solutions de problèmes locaux bien choisis; (ii) approximer la solution avec une approche de Galerkine peu couteuse sur l'espace construit dans (i). Dans cette deuxième partie, plusieurs taches ont été réalisées. Tout d'abord, une implémentation de plusieurs variantes MsFEM a été effectuée sous forme de template dans le logiciel de calcul Éléments Finis FreeFem++.Par ailleurs, plusieurs variantes des MsFEM pâtissent d'une erreur dite de résonance : lorsque la taille des hétérogénéités est proche de la taille du maillage grossier, la méthode devient très imprécise. Pour pallier ce problème, une méthode MsFEM enrichie a été développée : à la base MsFEM classique on rajoute des solutions de problèmes locaux ayant pour conditions aux limites des polynômes de haut degré. L'utilisation de polynômes nous permet d'obtenir une convergence de l'approche à des coûts de calcul raisonnables