Thèse soutenue

Étude expérimentale et modélisation cinétique de la transformation d’éthanol en butadiène

FR  |  
EN
Auteur / Autrice : Damien Dussol
Direction : Jean-Marc Schweitzer
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 04/11/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Chimie (Lyon ; 2004-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut français du pétrole Énergies nouvelles (Rueil-Malmaison, Hauts-de-Seine)
Jury : Président / Présidente : Pascal Fongarland
Examinateurs / Examinatrices : Jean-Marc Schweitzer, Yves Schuurman, Richard Vivier
Rapporteurs / Rapporteuses : Karine de Oliveira Vigier, Carine Julcour-Lebigue

Résumé

FR  |  
EN

Le butadiène est une molécule d’intérêt industriel qui peut être produite par le procédé dit Ostromislensky, avec l’éthanol en tant que matière première. Cette étude a pour objectif de développer un modèle cinétique pour expliquer la transformation d’un mélange éthanol/acétaldéhyde en butadiène, dans le cadre de la seconde étape de ce procédé. Le modèle cinétique est basé sur un schéma réactionnel et un modèle de réacteur. Le schéma proposé comprend la voie de Gorin Jones, communément acceptée dans la littérature, et une toute nouvelle voie impliquant un intermédiaire buténone. Les étapes clés ont été étudiées spécifiquement via des tests dédiés. Le schéma décrit aussi les étapes amenant aux principaux produits secondaires. Il a été validé à partir d’une base de données expérimentale, générée en amont de l’étude sur une unité de type gaz/solide, lit fixe, isobare (3 bara) et isotherme, avec un catalyseur Ta2O5 SiO2. L’influence des conditions opératoires sur l’effluent a été observée pour trois ratios éthanol/acétaldéhyde et sur des gammes de PPH (1,1 à 8,1 g·gcata 1·h-1) et de températures (320 à 370 °C). Le réacteur (piston dispersif sans limitations diffusionnelles) intégrant des lois cinétiques d’ordre, a été modélisé à l’état permanent via un solveur LSODE. Les paramètres cinétiques ont été estimés via un optimiseur Levenberg Marquardt à partir de la base de données expérimentale. Le modèle cinétique obtenu, basé sur un schéma réactionnel inédit, est en capacité de représenter et de prédire les débits des composés principaux et les tendances et ordre de grandeurs des débits des composés minoritaires selon les effets de PPH, de charge et de température, excepté dans certaines conditions opératoires limites isolées