Thèse soutenue

Analyse, modélisation et détection de bruits pour scanners laser terrestres

FR  |  
EN
Auteur / Autrice : Romain Rombourg
Direction : Franck HétroyEric Casella
Type : Thèse de doctorat
Discipline(s) : Mathématiques et informatique
Date : Soutenance le 05/12/2019
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Jean Kuntzmann (Grenoble)
Equipe de recherche : Equipe-projet Capture et analyses de formes en mouvement (Montbonnot, Isère ; 2011-....)
Jury : Président / Présidente : Edmond Boyer
Examinateurs / Examinatrices : Franck Hétroy
Rapporteurs / Rapporteuses : Julie Digne, Florent Lafarge

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette thèse, nous nous sommes concentrés sur plusieurs sujets liés à la détection du bruit dans les nuages de points générés par les scanners laser terrestres (TLS). Premièrement, les méthodes de projection pour calculer une image à partir d'un balayage TLS. Deuxièmement, la détection du bruit du ciel, c'est-à-dire le bruit produit lorsqu'une mesure d'un TLS à onde continue modulée en amplitude n'est effectuée que sur du rayonnement ambiant. Et enfin, la détection du bruit de points mixtes, c'est-à-dire les points acquis lorsque le TLS reçoit des signaux de retour de plusieurs surfaces différentes. Pour relever ces défis, nous avons d'abord analysé l'échantillonnage de l'espace du TLS et déduit des propriétés sur la densité locale de points en fonction de l'altitude, ce qui nous a permis de montrer les limites des techniques classiques de détection. Nous avons ensuite défini un cadre théorique pour analyser les méthodes de projection, fondements des méthodes de détection 2D. Ce cadre nous a permis de mettre en évidence deux propriétés fondamentales devant être satisfaites par une projection. En se basant sur ces propriétés, nous avons conçu un algorithme de projection les satisfaisant au mieux. Nous avons ensuite défini une quantification de la qualité d'une projection et comparé notre algorithme avec l'algorithme classique et montré que la méthode classique n'est pas adaptée. La projection proposée a quant à elle donné de très bons résultats. Comme le bruit du ciel n'a jamais été étudié dans de précédents travaux, nous l'avons formellement analysé pour construire des bases théoriques pour la détection du ciel. L'analyse nous a permis de montrer théoriquement et expérimentalement que la distribution de distance du bruit de ciel est indépendante des propriétés sous-jacentes du rayonnement ambiant. à partir de notre projection et des propriétés découvertes, nous avons conçu un détecteur de ciel et un détecteur de points mixtes. Les détecteurs ont été testés via une validation approfondie en conditions contrôlées. Les résultats ont montré que nos détecteurs combinés à notre projection sont capables de détecter correctement presque tous le bruit présenté avec peu de mauvaises détections pour le détecteur de ciel et une quantité raisonnable pour le détecteur de point mixte.