Thèse soutenue

Prédistorsion mixte pour des micro-cellules 5G

FR  |  
EN
Auteur / Autrice : Venkata Narasimha Manyam
Direction : Patricia Desgreys
Type : Thèse de doctorat
Discipline(s) : Réseaux, information et communications
Date : Soutenance le 09/11/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Télécom Paris (Palaiseau ; 1977-....)
Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Jury : Président / Présidente : Dominique Dallet
Examinateurs / Examinatrices : Patricia Desgreys, Chadi Jabbour, Philippe Meunier
Rapporteurs / Rapporteuses : Geneviève Baudoin, Myriam Ariaudo

Résumé

FR  |  
EN

Les stations de base à petite échelle (picocellules et femtocellules) seront un des leviers principaux qui permettront d'atteindre l'objectif 1000X, objectif fixé par les grands acteurs du domaine des télécommunications visant à augmenter la capacité des réseaux mobiles sans fil 5G d'un facteur 1000 par rapport aux réseaux 4G. Dans ce type de réseau, l'amplificateur de puissance (PA) est responsable de la majorité de la consommation de puissance de la station de base. Pour minimiser sa consommation de puissance, le PA est polarisé proche de sont point de compression mais avec l'augmentation des largeurs de bande, ce dernier subit des effets de mémoire accrus qui viennent s'ajouter aux problèmes classiques de non-linéarités. Les systèmes de prédistorsion numérique (DPD), et analogique/RF(ARFPD) peuvent être utilisés pour améliorer le compromis linéarité / efficacité des PAs. Cependant pour les pico-cellules et femto-cellules utilisées dans le standard 5G, les prédistorseurs conventionnels ne sont adaptés pour des raisons de complexité et de consommation de puissance.Le modèle "Memory Polynomilal" (MP) est l'un des modèles de prédistorsion les plus attractifs pour modéliser les PAs, fournissant des performances intéressantes avec peu de coefficients. Cependant, la précision de ce modèle se dégrade pour les signaux large bance. Pour palier ce problème, nous proposons un nouveau modèle, le FIR-MP qui combine un filtre FIR au modèle MP classique. Pour valider et quantifier la précision du modèle proposé, nous avons effectué des simulations avec un modèle extrait par mesure de l'amplificateur sur étagère ADL5606 (GaAs 1W HBT PA). Les résultats de ces simulations présentent des améliorations du taux de fuite des canaux adjacents (ACLR) de 7,2 dB et 15,6 dB, respectivement, pour des signaux à 20 MHz et 80 MHz par rapport au modèle MP classique. Le FIR-MP a été également synthétisé en technologie CMOS FDSOI 28 nm. Les résultats de la synthèse ont donné une puissance globale de 9,18 mW and 116,2 mW, respectivement, pour les signaux de 20 MHz and 80 MHz.Basé sur le modèle proposé de FIR-MP, une nouvelle approche à signaux mixtes pour linéariser les PAs a été aussi étudiée. En fait, le filtre numérique FIR améliore la performance de correction de la mémoire sans aucune expansion de la bande passante et la linéarisation en bande de base permet d'éviter l'utilisation de composants RF dans la linéariseur. Ainsi, les contraintes en bande passante requises pour le DAC, les filtres de reconstruction et les blocs RF de l'émetteur sont relâchées comparés aux techniques conventionnelles de linéarisation numériques et RF. Nous avons ainsi étudié l'impact des diverses non-idéalités en utilisant un signal modulé à 80 MHz afin de dériver les exigences pour la mise en œuvre du circuit. Les simulations ont montré qu'une résolution de 8 bits pour les coefficients et un SNR de 60 dB sont nécessaires pour atteindre un ACLR1 supérieur à 45 dBc. Ces résultats constituent un premier signe favorable dans l'optique d'une implémentation matérielle de la solution proposée, étape indispensable pour évaluer précisément sa consommation de puissance et sa complexité pour pouvoir la comparer à l'état de l'art des linéariseurs.