Thèse soutenue

Microstructure et propriétés de transport de matériaux polymères biporeux

FR  |  
EN
Auteur / Autrice : Sarra Mezhoud
Direction : Daniel GrandeVincent Monchiet
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 13/12/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie et des Matériaux Paris-Est (Thiais, Val-de-Marne) - Institut de Chimie et des Matériaux Paris-Est / ICMPE
Jury : Président / Présidente : Hélène Dumontet
Examinateurs / Examinatrices : Daniel Grande, Vincent Monchiet, Michel Bornert, Patrick Kékicheff
Rapporteurs / Rapporteuses : Jannick Duchet-Rumeau, Christian Geindreau

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

RésuméLes matériaux polymères biporeux interviennent dans diverses applications en tant que scaffolds pour l’ingénierie tissulaire, ou matériaux modèles mimant des milieux poreux tels que les roches et les sols. Le rôle de chaque niveau de porosité sur les propriétés de transport de ces milieux demeure une question fondamentale. Dans ce contexte, une démarche alliant conception et caractérisation physico-chimique de matériaux polymères à deux niveaux de porosité a été développée. Des réseaux biporeux modèles à base de poly(méthacrylate de 2-hydroxyethyle) ont ainsi été conçus en utilisant deux types de gabarits comme porogènes : des particules de NaCl (frittées ou non ) générant le premier niveau de porosité et un solvant générant le deuxième. Une caractérisation structurale et morphologique a été réalisée par microscopie électronique à balayage (MEB) et porosimétrie à intrusion de mercure (MIP) afin d’étudier l’influence des agents porogènes sur la structure. Un réseau présentant deux distributions de tailles de pores comprises entre 10 nm et 10 µm et de 100 µm de diamètre ont été observées. Pour décrire plus finement la microstructure, notamment la forme réelle des pores et l’interconnectivité des réseaux, des analyses par microtomographie à rayons X et au synchrotron ont été réalisées. L’optimisation des paramètres expérimentaux (taille du voxel, énergies mises en jeu) a permis d’obtenir des images de haute résolution. Certaines coupes ont été sélectionnées pour la simulation de l’écoulement d’un fluide dans un milieu biporeux bi- ou tridimensionnel. Les milieux poreux étudiés comportant au moins trois échelles, à savoir les échelles caractéristiques de deux niveaux de porosité et l’échelle macroscopique, une démarche par double changement d’échelle a été élaborée. Les approches envisagées reposent sur la transformée de Fourier rapide (FFT). L’utilisation de l’équation de Brinkman a permis de combiner les équations de Stokes et Darcy et de déterminer une perméabilité macroscopique