Thèse soutenue

Transistors en diamant pour électronique de puissance : études des matériaux et procédés technologiques

FR  |  
EN
Auteur / Autrice : Oluwasayo Loto
Direction : Etienne Gheeraert
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 18/12/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble)
Jury : Président / Présidente : Christophe Vallée
Examinateurs / Examinatrices : Hitoshi Umezawa
Rapporteurs / Rapporteuses : Jocelyn Achard, Daniel Araújo

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Avec la prise de conscience du changement climatique et le dévelopement des sources d’énergies renouvelables, une demande accrue pour une électronique de puissance plus fiable et plus efficace apparait. L’électronique de puissance basé sur les semi-conducteurs à grand gap (carbure de silicium, nitrure de gallium et diamant) vont apporter une réelle amélioration par rapport aux systèmes actuels basés sur des composants au silicium. Ces améliorations concernent en particulier une réduction des pertes, une plus grande tension de bloquage, une amélioration de l’efficacité et de la fiabilité des composants, mais aussi en réduisant les exigences thermiques.Le diamant, bien connu pour sa valeur en joaillerie, possède des propriétés électriques et thermiques très utiles pour l’électronique de puissance. Différent type de design et architectures de dispositifs ont été fabriqués à l'aide de diamant semi-conducteur avec ses caractéristiques électriques prometteuses et pouvant ainsi être intégré à des systèmes. Un dispositif Metal-Oxyde-Semiconductor-Field-Effect-Transistor (MOSFET) en diamant pseudo-vertical offre une densité de courant élevée ainsi que des valeurs de résistance et de claquage élevées nécessaires dans les systèmes haute tension.L’objectif de cette thése est de fabriquer le premier MOSFET de puissance diamant à effet de champ pseudo-vertical avec des valeurs de claquage allant jusqu’à 6,5 kV (20 mOhm.cm-2, 200 ° C). Ce travail porte sur la maîtrise des différents processus impliqués dans la réalisation du dispositif en commençant par la caractérisation du substrat cristallin de diamant suivi des croissances épitaxiales, la microfabrication et pour finir la caractérisation de dispositifs.Dans cette thèse, les étapes nécessaires à la réalisation du MOSFET de puissance pseudo-vertical sont présentées ainsi que trois étapes critiques dans la réalisation du dispositif, qui sont les problèmes liés au substrat, la propagation de défauts à travers les différents empilements de couches et la fiabilité de l'oxyde de grille sont abordés. Le choix de substrats de qualité sans défauts de polissage et avec une faibles densités de dislocations est nécessaire pour une croissance de qualité des différentes couches épitaxiées. Différents substrats ont été achetés et caractérisés. Le type de substrat le plus approprié pour la croissance d'épitaxie de qualité est déterminé après caractérisation par topographie à rayons X, mesures de cathodoluminescence et mesures électriques. La propagation des défauts est inévitable durant la croissance des quatre couches d’épitaxie successives nécessaires à la fabrication du transistor MOSFET pseudovertical. L’apparition de défauts peut provenir des différentes concentrations d’impuretés et du type de dopage entrainant une modification du réseau cristallin et la création de contrainte à l'interface. La topographie aux rayons X et les rocking curves ont été utilisées pour étudier les couches après croissance. Une solution pour effectuer une amélioration dans la croissance de cet empilement de couche est proposé.La fiabilité de la grille est généralement source de préoccupation dans les composant de type MOS. Le décalage de la tension de seuil pendant le fonctionnement est une conséquence des charges présentes dans l'oxyde et des états d'interface du dispositif. Un dispositif capacité MOS de type p a été utilisé pour étudier ce phénomène de manière expérimentale. L'influence du recuit post-oxydation à haute température s'est avérée bénéfique pour obtenir des paramètres d'oxyde de grille stables. Le décalage de la tension de bande plate a également été exploré par des mesures de stress en tension.Toutes les étapes nécessaires à la fabrication du transistor ont ainsi été mises au point séparément, et la technologie a été validée par la réalisation et la caractérisation électrique de transistors Metal-Semiconducteur FET et diodes Schottky.