Topologie et transport électronique dans des systèmes de Dirac sous irradiation

par Jonathan Atteia

Thèse de doctorat en Lasers, matière et nanosciences

Sous la direction de Jérôme Cayssol.

Le président du jury était David S. Dean.

Le jury était composé de Jérôme Cayssol, David S. Dean, Jean-Noël Fuchs, David Carpentier, Pierre Delplace.

Les rapporteurs étaient Jean-Noël Fuchs, David Carpentier.


  • Résumé

    Cette thèse présente un travail théorique effectué dans le domaine de la physique de la matière condensée, et plus particulièrement la physique des solides. Ce domaine de la physique décrit le comportement des électrons dans les cristaux à très basses températures dans le but d'observer des effets quantiques à l'échelle mésoscopique.Cette thèse se situe à l'interface entre deux types de matériaux : le graphène et les isolants topologiques. Le graphène est une couche d’épaisseur monoatomique d’atomes de carbone arrangés en réseau nid d’abeilles, qui présente de nombreuses propriétés impressionnantes en optique, en mécanique et en électronique. Les isolants topologiques sont des matériaux qui sont isolants en volume et conduisent l'électricité sur les bords. Cette caractéristique découle d'une propriété topologique des électrons dans le volume. La topologie est une branche des mathématiques qui décrit des objets dans leur globalité en ne retenant que les caractéristiques invariantes par certaines déformations continues. Les états de bords des isolants topologiques sont robustes à certaines perturbations comme le désordre créé par des impuretés dans le matériau. Le lien entre ces deux sujets est double. D’une part les premiers modèles d’isolants topologiques de bande ont été formulés pour le graphène, par Haldane en 1988 et Kane et Mele en 2005, ouvrant ainsi la voie à la découverte des isolants topologiques à 2D et 3D dans des matériaux à fort spin-orbite. D’autre part, il a été prédit que le graphène, même sans spin-orbite, devient un isolant topologique lorsqu'il est irradié par une onde électromagnétique. Dans cette thèse, nous suivons deux directions en parallèle : décrire les caractéristiques topologiques d’une part et les propriétés de transport électronique d’autre part.En premier lieu, nous passons en revue le modèle des liaisons fortes pour le graphène, puis le modèle effectif qui décrit les électrons de basse énergie comme des fermions de Dirac sans masse. Nous introduisons ensuite le modèle de Haldane, un modèle simple défini sur le réseau en nid d’abeille et qui présente des bandes non triviales caractérisées par un invariant topologique, le nombre de Chern, non nul. Du fait de cette propriété topologique, ce modèle possède un état de bord chiral se propageant au bord de l’échantillon et une conductance de Hall quantifiée. Lorsque le graphène est irradié par un laser ayant une fréquence plus large que la largeur de bande du graphène, il acquiert un gap dynamique similaire au gap topologique du modèle de Haldane. Lorsque la fréquence est réduite, nous montrons que des transitions topologiques se produisent et l'apparition d'états de bords.Le travail principal de cette thèse est l'étude du transport électronique dans le graphène irradié dans un régime de paramètres réalisables expérimentalement. Une feuille de graphène est connectée à deux électrodes avec une différence de potentiel qui génère un courant. Nous calculons la conductance différentielle de l'échantillon selon le formalisme de Landauer-Büttiker étendu aux systèmes soumis à une modulation périodique. Il nous est possible d'obtenir la conductance en fonction de la géométrie de l’échantillon et de différents paramètres tels que le potentiel chimique, la fréquence et l'intensité de l’onde.Un autre type d'isolant topologique est l’isolant d’effet Hall quantique de spin. Ce type de phase possède deux états de bords dans lesquels les spins opposés se propagent dans des directions opposées. Le second travail de cette thèse concerne le transport électronique à travers cet état de bord irradié. Nous observons l'apparition d'un courant pompé en l'absence de différence de potentiel. Nous distinguons deux régimes : un pompage adiabatique quantifié à basse fréquence, et un régime de réponse linéaire non quantifiée à hautes fréquences. Par rapport aux études précédentes existantes, nous montrons un effet important de la présence des électrodes de mesure.

  • Titre traduit

    Topology and electronic transport in Dirac systems under irradiation


  • Résumé

    This thesis presents a theoretical work done in the field of condensed matter physics, and in particular solid state physics. This field of physics aims at describing the behaviour of electrons in crystalline materials at very low temperature to observe effects characteristic of quantum physics at the mesoscopic scale.This thesis lies at the interface between two types of materials : graphene and topological insulators. Graphene is a monoatomic layer of carbon atoms arranged in a honeycomb lattice that presents a wide range of striking properties in optics, mechanics and electronics. Topological insulators are materials that are insulators in the bulk and conduct electricity at the edges. This characteristic originates from a topological property of the electrons in the bulk. Topology is a branch of mathematics that aims to describe objects globally retaining only characteristics invariant under smooth deformations. The edge states of topological insulators are robust to certain king of perturbations such as disorder created by impurities in the bulk. The link between these two topics is two-fold. On one hand, the first models of band topological insulators were formulated for graphene, by Haldane in 1988 and Kane and Mele in 2005, opening the way to the discovery of 2D and 3D topological insulators in materials with strong spin-orbit coupling. On the other hand, it was predicted that graphene, even without spin-orbit coupling, turns to a topological insulator under irradiation by an electromagnetic wave. In this thesis, we follow two directions in parallel : describe the topological properties on one hand, and the electronic transport properties on the other hand.First, we review the tight-binding model of graphene, and the effective model that describes low-energy electrons as massless Dirac fermions. We then introduce the Haldane model, a simple model defined on the honeycomb lattice that presents non-trivial bands characterised by a topological invariant, the Chern number. Due to this topological property, this model possesses a chiral edge state that propagates around the sample and a quantized Hall conductance. When graphene is irradiated by a laser with a frequency larger than the graphene bandwidth, it acquires a dynamical gap similar to the topological gap of the Haldane model. When the frequency is lowered, we show that topological transitions happens and that different edge states appear.The main work of this thesis is the study of electronic transport in irradiated graphene in a regime of experimentally achievable parameters. A graphene sheet is connected to two electrodes with a potential difference that generates a current. We compute the differential conductance of the sample according to Landauer-Büttiker formalism extended to periodically driven systems. Using this simple formalism, we are able to obtain the conductance as a function of the geometry of the sample and of several parameters such as the chemical potential, the frequency and the intensity of the electromagnetic wave.Another kind of topological insulator is the quantum spin Hall insulator. This type of phase possesses two edge states in which opposite spins propagate in opposite directions. The second work of this thesis concerns electronic transport through this irradiated edge state. We observe the apparition of a pumped current in the absence of a potential difference. We observe two regimes : a quantized adiabatic at low frequency, and a non-quantized linear response regime at high frequency. Compared to previous studies, we show an important effect originating from the presence of electrodes.



Le texte intégral de cette thèse sera accessible librement à partir du 01-01-2020


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?