Thèse soutenue

Caractérisation numérique d’antennes VLF-LF en environnement réel

FR  |  
EN
Auteur / Autrice : David Saintier
Direction : Jean-Lou Dubard
Type : Thèse de doctorat
Discipline(s) : ÉlectronIque
Date : Soutenance le 24/10/2018
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Sophia Antipolis, Alpes-Maritimes)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Laboratoire d'électronique, antennes et télécommunications (Sophia Antipolis, Alpes-Maritimes) - Laboratoire d'Electronique, Antennes et Télécommunications
Jury : Président / Présidente : Michel Ney
Examinateurs / Examinatrices : Michel Ney, Renaud Loison, Alain Reineix, Jean-Pierre Bérenger
Rapporteurs / Rapporteuses : Renaud Loison, Alain Reineix

Résumé

FR  |  
EN

Les très basses fréquences (VLF) sont aujourd’hui principalement utilisées pour les communications sous-marines. Ces fréquences ont en effet l’avantage de pénétrer dans l’eau de mer jusqu’à quelques dizaines de mètre de profondeur, ainsi que de permettre des communications à très longue distance, au-delà de l’horizon. Les antennes nécessaires à l’établissement de ces communications sont nécessairement de très petite taille par rapport aux longueurs d’onde mises en jeu. Ces antennes sont des structures composées de centaines de mètre de câbles métalliques, situées à un emplacement étudié pour les qualités diélectriques du sol ou les avantages structurels du relief. Pour étudier de telles antennes, nous proposons l’utilisation d’un code basé sur une méthode temporelle, la TLM. Cette méthode peut se révéler être très efficace pour des études sur de larges bandes de fréquence et en présence d’un environnement diélectrique complexe. Pour cela, nous avons amélioré le modèle du Fil Mince permettant de modéliser une structure métallique en une dimension et avons cherché à valider son fonctionnement en présence d’un environnement réaliste. Dans ce document, nous présentons ainsi les différentes étapes ayant abouties aux améliorations apportées au modèle de Fil Mince. Notre code a été validé en comparant nos résultats à ceux de FEKO, un logiciel commercial basé sur la MoM considéré comme la méthode la plus adaptée à ce type de problème. Nous avons proposé, en particulier, une solution permettant de garantir une bonne précision du modèle quel que soit l’orientation du fil dans le maillage cartésien 3D. Nous avons ensuite précisé le domaine de validité des fils coudés ainsi que des jonctions de plusieurs fils. Nous avons étudié également l’interaction entre le fil et des milieux inhomogènes. Il s’agit là d’une problématique ambitieuse pour laquelle nous avons apporté quelques éléments de réponse mais qui reste à ce jour un verrou technologique à lever. Enfin, nous avons étudié des structures antennaires réalistes. Les simulations d’un système composé d’antennes en T déployé dans une vallée ont permis d’appréhender le fonctionnement d’une telle structure et ont montré l’intérêt de notre méthode. En effet, les temps de calcul nécessaires à la résolution du problème sont significativement plus faibles avec le code TLM qu’avec le logiciel FEKO sur ce type de sol complexe. Les simulations d’une antenne Trideco avec un plan de masse radial aérien ou enterré ont quant à elles montré les limites actuelles du code TLM qui reste handicapé par une modélisation imprécise des nœuds de connexion entre plusieurs fils et de leur interaction avec les milieux inhomogènes.