Thèse soutenue

Prototypes de JEM-EUSO pour la détection des rayons cosmiques d’ultra-haute énergie (UHECRs) : de l’électronique du module de photo-détection (PDM) à l’exploitation et l’analyse des données de deux pathfinders

FR  |  
EN
Auteur / Autrice : Aera Jung
Direction : Étienne ParizotPierre Barrillon
Type : Thèse de doctorat
Discipline(s) : Physique de l'Univers
Date : Soutenance le 30/05/2017
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Sciences de la terre et de l'environnement et physique de l'univers (Paris ; 2014-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019)
Laboratoire : AstroParticule et Cosmologie (Paris ; 2005-....)
Jury : Président / Présidente : Stavros Katsanevas
Examinateurs / Examinatrices : Étienne Parizot, Pierre Barrillon, Mario Edoardo Bertaina, Isabelle Lhenry-Yvon, Christophe de La Taille, Bertrand Vallage, Aline Meuris
Rapporteurs / Rapporteuses : Mario Edoardo Bertaina, Isabelle Lhenry-Yvon

Résumé

FR  |  
EN

L’expérience JEM-EUSO (traduction de Observatoire spatial de l’univers extrême à bord du module de l'expérience japonaise) est conçu pour observer les UHECR en détectant la lumière fluorescente UV émise par la gerbe qui se développe lorsque les UHECR interagissent avec l'atmosphère terrestre. Les gerbes atmosphériques sont constituées de dizaines de milliards de particules secondaires ou plus traversant l'atmosphère quasiment à la vitesse de la lumière, excitant les molécules d'azote qui émettent ensuite de la lumière dans la gamme UV. Alors que cette « technique de fluorescence » est habituellement utilisée au sol, en opérant ainsi à partir de l'espace, JEM-EUSO, pour la première fois, fournira des statistiques élevées sur ces événements. Avec un large champ de vue de ± 30 °, JEM-EUSO pourra observer depuis l’espace un volume d'atmosphère beaucoup plus grand que ce qui est possible du sol, en collectant un nombre sans précédent d'événements UHECR aux plus hautes énergies.Pour les quatre prototypes d’expériences construites par la collaboration, nous avons développé un ensemble commun d'électronique, en particulier le système central d'acquisition de données capable de fonctionner au sol, sur des ballons à haute altitude et dans l'espace.Ces expériences utilisent toutes un détecteur composé d'un module de détection de photo (PDM) identique aux 137 qui seront présents sur la surface focale JEM-EUSO. La lumière UV générée par les gerbes atmosphériques à haute énergie passe le filtre UV et frappe les tubes à photomultiplicateurs multi-anodes (MAPMT). Les photons UV sont alors transformés en électrons, qui sont multipliés par les MAPMT et le courant qu’ils créent est amplifié par des cartes ASIC de circuit intégré (EC-ASIC), qui effectuent également le comptage des photons et l'estimation de charge. Une carte FPGA nommé PDM board s'interface avec ces cartes ASIC, fournissant des paramètres d'alimentation et de configuration à ces cartes ASIC, collecte alors les données et exécute le déclenchement d’acquisition de niveau 1.Dans le cadre de ces travaux, je me suis occupée de la conception, du développement, de l'intégration et du test la carte FPGA PDM board pour les missions EUSO-TA et EUSO-Balloon ainsi que des tests d'algorithme de déclenchement autonomes d’acquisitions et j'ai également analysé les données de vol d’EUSO-Balloon et de la campagne sol EUSO-TA d’octobre 2015.Dans cette thèse, je donnerai un bref aperçu des rayons cosmiques à haute énergie, y compris de leur technique de détection et des principales expériences pour les détecter (chapitre 1), je décrirai JEM-EUSO et ses pathfinders (chapitre 2), je présenterai les détails de la conception et de la fabrication du PDM (chapitre 3) et de la carte FPGA PDM board (chapitre 4), ainsi que des tests d'intégration d’EUSO-TA et d’EUSO-Balloon (chapitre 5). Je ferai un rapport sur la campagne EUSO-Balloon de 2014 (chapitre 6) et sur ses résultats (chapitre 7), y compris une analyse spécifique développée pour rechercher des variations globales de l'émissivité UV au sol et j’appliquerai une analyse similaire aux données collectées sur le site de Telescope Array (Chapitre 8). Enfin, je présenterai la mise en œuvre et le test du déclencheur de premier niveau (L1) dans la carte de contrôle FPGA (chapitre 9). Un bref résumé de la thèse sera donné au chapitre 10.