Thèse soutenue

Effet de l’oxygène dans l'irradiation par des ions médicaux combinés avec des nanoparticules

FR  |  
EN
Auteur / Autrice : Marta Bolsa Ferruz
Direction : Sandrine Lacombe
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 18/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut des sciences moléculaires d'Orsay (2010-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Laure Catala
Examinateurs / Examinatrices : Sandrine Lacombe, Laure Catala, Kevin Prise, Jean-louis Habrand, Marie-Anne Hervé du Penhoat, Erika Porcel
Rapporteurs / Rapporteuses : Kevin Prise, Jean-louis Habrand

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Environ 50% des patients recevant un traitement contre le cancer bénéficient de la radiothérapie. La radiothérapie conventionnelle consiste à utiliser des rayons X de haute énergie capables de traverser les tissus et de traiter des tumeurs situées en profondeur de façon non-invasive. Malheureusement, les rayons X ne font pas la distinction entre les tumeurs et les tissus sains, qui peuvent donc être endommagés. Cette non-sélectivité est à l’origine de graves effets secondaires, voire du développement de cancers secondaires. Par conséquent, l’amplification des effets radiatifs au sein de la tumeur par rapport aux tissus environnants représente un défi majeur.L’hadronthérapie (traitement par faisceaux de protons ou d’ions carbone) est considérée comme l’une des techniques les plus prometteuses car, contrairement aux rayons X, la quantité d’énergie déposée atteint son maximum en fin de trajectoire. Lorsque le faisceau est réglé de manière à ce que ce maximum atteigne la tumeur, aucun dommage n’est causé aux tissus situés au-delà. Un autre avantage majeur est que les ions lourds sont plus efficaces pour traiter les tumeurs radiorésistantes. L’utilisation de cette technique est cependant restreinte du fait des dommages – plus faibles mais néanmoins significatifs – causés aux tissus normaux situés sur la trajectoire du faisceau d’ions en amont de la tumeur. Afin d’améliorer les performances de l’hadronthérapie, l’équipe a développé à l’ISMO une nouvelle stratégie combinant l’utilisation de nanoparticules (NPs) métalliques avec l’irradiation par faisceaux d’ions. L’utilisation de NPs a pour but non seulement d’amplifier les effets des rayonnements dans la tumeur mais également d’améliorer l'imagerie médicale à l’aide des mêmes agents (théranostic). Les NPs possèdent une chimie de surface permettant leur fonctionnalisation avec des ligands capable d’améliorer la biocompatibilité, la stabilité ainsi que la circulation sanguine et l’accumulation dans la tumeur. L’équipe a déjà démontré que les petites NPs d’or et de platine (≈ 3 nm) avaient la capacité d’amplifier les effets causés par les faisceaux d’ions carbone médicaux en présence d’oxygène. Cependant, les tumeurs radiorésistantes sont susceptibles de contenir des régions hypoxiques. Il est donc urgent de quantifier et de caractériser l’influence de l’oxygène sur l’effet radio-amplificateur. Le but de ma thèse était d’étudier l’influence de l’oxygène lors d’irradiations par des faisceaux d’ions médicaux en présence de NPs d’or et de platine. Pour cela, deux lignes de cellules cancéreuses humaines radiorésistantes ont été testées: HeLa (col de l’utérus) et BxPC-3 (pancréas). Plusieurs techniques d’irradiation ont été utilisées : des faisceaux d’ions carbone et hélium générés par « passive scattering » et des faisceaux d’ions carbone générés par « pencil beam scanning ». Les principaux résultats de cette étude sont les suivants. En condition oxique (concentration d’O₂ = 20%), une amplification des effets radiatifs a été observée pour les deux types de NPs (à concentration de métal égale). Ce phénomène se réduit à mesure que la concentration d’oxygène diminue mais reste significatif jusqu’à 0.5%. Aucune différence significative n’a été observée entre les deux lignes cellulaires. Il est intéressant de noter que la dépendance à l’oxygène varie en fonction de la technique d’irradiation utilisée. Une tentative d’explication de l’influence de l’oxygène par des processus moléculaires est proposée. Des perspectives de développements ultérieurs sont suggérées.