Approche algébrique sur l'équivalence de codes.

par Mohamed Ahmed Saeed

Thèse de doctorat en Informatique

Sous la direction de Ayoub Otmani et de Mohsin Hashim.

Le président du jury était Philippe Gaborit.

Les rapporteurs étaient Daniel Augot, Nicolas Sendrier.


  • Résumé

    Le problème d’´équivalence de code joue un rôle important dans la théorie de code et la cryptographie basée sur le code. Cela est dû à son importance dans la classification des codes ainsi que dans la construction et la cryptanalyse des cryptosystèmes à base de codes. Il est également lié à un problème ouvert d’isomorphisme de graphes, un problème bien connu dans le domaine de la théorie de la complexité. Nous prouvons pour les codes ayant un hull trivial qu’il existe une réduction polynomiale de l’équivalence par permutation de codes à l’isomorphisme de graphes. Cela montre que cette sous-classe d’équivalence de permutation n’est pas plus dure que l’isomorphisme de graphes. Nous introduisons une nouvelle méthode pour résoudre le problème d’équivalence de code. Nous développons des approches algébriques pour résoudre le problème dans ses deux versions : en permutation et en diagonale. Nous construisons un système algébrique en établissant des relations entre les matrices génératrices et les matrices de parité des codes équivalents. Nous nous retrouvons avecun système plusieurs variables d’équations linéaires et quadratiques qui peut être résolu en utilisant des outils algébriques tels que les bases de Groebner et les techniques associées. Il est possible en théorie de résoudre l’équivalence de code avec des techniques utilisant des bases de Groebner. Cependant, le calcul en pratique devient complexe à mesure que la longueur du code augmente. Nous avons introduit plusieurs améliorations telles que la linéarisation par bloc et l’action de Frobenius. En utilisant ces techniques, nous identifions de nombreux cas où le problème d’équivalence de permutation peut être résolu efficacement. Notre méthode d’équivalence diagonale résout efficacement le problème dans les corps de petites tailles, à savoir F3 et F4. L’augmentation de la taille du corps entraîne une augmentation du nombre de variables dans notre système algébrique, ce qui le rend difficile à résoudre. Nous nous intéressons enfin au problème d’isomorphisme de graphes en considérant un système algébrique quadratique pour l’isomorphisme de graphes. Pour des instances tirées aléatoirement, le système possède des propriétés intéressantes en termes de rang de la partie linéaire et du nombre de variables. Nousrésolvons efficacement le problème d’isomorphisme de graphes pour des graphes aléatoires avec un grand nombre de sommets, et également pour certains graphes réguliers tels que ceux de Petersen, Cubical et Wagner.123

  • Titre traduit

    Algebraic Approach for Code Equivalence


  • Résumé

    Code equivalence problem plays an important role in coding theory and code based cryptography.That is due to its significance in classification of codes and also construction and cryptanalysis of code based cryptosystems. It is also related to the long standing problem of graph isomorphism, a well-known problem in the world of complexity theory. We introduce new method for solving code equivalence problem. We develop algebraic approaches to solve the problem in its permutation and diagonal versions. We build algebraic system by establishing relations between generator matrices and parity check matrices of the equivalent codes. We end up with system of multivariables of linear and quadratic equations which can be solved using algebraic tools such as Groebner basis and related techniques. By using Groebner basis techniques we can solve the code equivalence but the computation becomes complex as the length of the code increases. We introduced several improvements such as block linearization and Frobenius action. Using these techniques we identify many cases where permutation equivalence problem can be solved efficiently. Our method for diagonal equivalence solves the problem efficiently in small fields, namely F3 and F4. The increase in the field size results in an increase in the number of variables in our algebraic system which makes it difficult to solve. We introduce a new reduction from permutation code equivalence when the hull is trivial to graph isomorphism. This shows that this subclass of permutation equivalence is not harder than graph isomorphism.Using this reduction we obtain an algebraic system for graph isomorphism with interesting properties in terms of the rank of the linear part and the number of variables. We solve the graph isomorphism problem efficiently for random graphs with large number of vertices and also for some regular graphs such as Petersen, Cubical and Wagner Graphs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Approche algébrique sur l'équivalence de codes.


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rouen. BU Lettres, Sciences humaines. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Approche algébrique sur l'équivalence de codes.
  • Notes : Thèse soutenue en co-tutelle. Texte en anglais.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.