Thèse soutenue

Méthodes quasi-optimales pour la résolution des équations intégrales de frontière en électromagnétisme

FR  |  
EN
Auteur / Autrice : Priscillia Daquin
Direction : Jean-René PoirierRonan Perrussel
Type : Thèse de doctorat
Discipline(s) : Electromagnétisme et Systèmes Haute Fréquence
Date : Soutenance le 20/10/2017
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....)
Jury : Président / Présidente : Olivier Chadebec
Examinateurs / Examinatrices : Jean-René Poirier, Ronan Perrussel, Frédéric Messine
Rapporteurs / Rapporteuses : Francesco Paolo Andriulli, Marion Darbas

Résumé

FR  |  
EN

Il existe une grande quantité de méthodes numériques adaptées d’une part à la modélisation, et d'autre part à la résolution des équations de Maxwell. En particulier, la méthode des éléments nis de frontière (BEM), ou méthode des Moments (MoM), semble appropriée pour la mise en équation des phénomènes de diffraction par des objets parfaitement conducteurs, en limitant le cadre de l'étude à la frontière entre l'objet diffractant et le milieu extérieur. Cette méthode mène systématiquement à la résolution d’un système linéaire dense, que nous parvenons à compresser en l'approchant numériquement par une matrice hiérarchique creuse, appelée H-matrice. Cette approximation peut être complétée d'une ré-agglomération permettant d'améliorer la sparsité de la H-matrice et ainsi d'optimiser davantage la résolution du système traité. La hiérarchisation du système s'effectue en considérant la matrice traitée par blocs, que l'on peut ou non compresser selon une condition d'admissibilité. L'Approximation en Croix Adaptative (ACA) ou l'Approximation en Croix Hybride (HCA) sont deux méthodes de compression que l'on peut alors appliquer aux blocs admissibles. Il existe une grande quantité de méthodes numériques adaptées d’une part à la modélisation, et d'autre part à la résolution des équations de Maxwell. En particulier, la méthode des éléments finis de frontière (BEM), ou méthode des Moments (MoM), semble appropriée pour la mise en équation des phénomènes de diffraction par des objets parfaitement conducteurs, en limitant le cadre de l'étude à la frontière entre l'objet diffractant et le milieu extérieur. Cette méthode mène systématiquement à la résolution d’un système linéaire dense, que nous parvenons à compresser en l'approchant numériquement par une matrice hiérarchique creuse, appelée H-matrice. Cette approximation peut être complétée d'une ré-agglomération permettant d'améliorer la sparsité de la H-matrice et ainsi d'optimiser davantage la résolution du système traité. La hiérarchisation du système s'effectue en considérant la matrice traitée par blocs, que l'on peut ou non compresser selon une condition d'admissibilité. L'Approximation en Croix Adaptative (ACA) ou l'Approximation en Croix Hybride (HCA) sont deux méthodes de compression que l'on peut alors appliquer aux blocs admissibles. Le travail de cette thèse consiste dans un premier temps à valider le format H-matrice en 2D et en 3D en utilisant l'ACA, puis d'y appliquer la méthode HCA, encore peu exploitée. Nous pouvons alors résoudre le système linéaire issu de la BEM en utilisant différents solveurs, directs ou non, adaptés au format hiérarchique. En particulier, nous pourrons constater l'efficacité du préconditionnement LU hiérarchique sur un solveur itératif. Nous pourrons alors appliquer ce formalisme au cas des surfaces rugueuses ou encore des fibres à cristaux photoniques (PCF). Il sera également possible de paralléliser certaines opérations sur architecture partagée afin de réduire de nouveau le coût temporel de la résolution.