Étude des interfaces électrodes/électrolyte à base de liquides ioniques pour batterie lithium-ion

par Ewelina Bolimowska

Thèse de doctorat en Chimie

Sous la direction de Catherine Santini et de Hélène Rouault.

Soutenue le 28-06-2016

à Lyon , dans le cadre de École Doctorale de Chimie (Lyon) , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Laboratoire de Chimie, Catalyse, Polymères et Procédés (laboratoire) .

Le président du jury était Stéphane Daniele.

Le jury était composé de Catherine Santini, Hélène Rouault, Kenneth Richard Seddon, Andrea Mele.

Les rapporteurs étaient Agílio Pádua, Corinne Lagrost.


  • Résumé

    Dans les batteries ion lithium, la présence d’électrolytes organiques volatiles et inflammables engendre des problèmes récurrents de sécurité. Une possible solution consiste à les remplacer par des sels fondus liquides à température ambiante, les liquides ioniques (LI), présentant une tension de vapeur négligeable et sont considérés comme flamme retardant. Leur utilisation avec des électrodes carbone (les plus usitées dans les batteries commerciales) nécessitent la présence d’un additif pour améliorer les performances des batteries.Le but de cette thèse était de déterminer le rôle de cet additif par des méthodes analytiques et de la modélisation. Tout d’abord, l’impact de cet additif sur la solvatation et la diffusion des sels de lithium a été étudié par RMN 2-D [NOE et HOESY {1H-7Li}, {1H-19F}, et la sphère de coordination du cation lithium a été simulée par dynamique moléculaire. Puis des études électrochimiques ont été développées notamment le cyclage galvanostatique à potentiel sélectionné et le cyclage voltamétrique afin de déterminer la capacité de la batterie et d’étudier les étapes d‘insertion du cation lithium au cours de la première étape de réduction. Cette étape a également été analysée par impédance électrochimique. En complément, une analyse par XPS (spectrométrie photoélectronique X) sur les électrodes post-mortem de piles arrêtées aux potentiels déterminés par impédance, a permis de caractériser les composés chimiques formés à la surface des électrodes au cours de la première réduction, mais également après plusieurs cycles de charge/décharge

  • Titre traduit

    Investigation of the interface electrode/ionic liquid based electrolyte for lithium ion battery


  • Résumé

    In lithium ion batteries, the commercial organic electrolytes induce difficulties in the manufacturing and the use of the battery (volatile and flammable components). There are active research to eliminate these safety problems, one of the approach is the replacement of conventional battery electrolytes with room temperature ionic liquids (RTILs), which exhibit negligible vapor pressure, low flammability, high flash point. The use of ILs based electrolytes for carbon based electrodes requires presence of organic additive for improving the cyclic performance. The aim of this thesis was to determine the exact role of the organic additive through experimental and computer simulation methodologies. Its impact onto the solvation and transportation of lithium cation was investigated through {1H-7Li}, {1H-19F} NOE correlations (HOESY), and pulsed field gradient spin-echo (PGSE) NMR experiences and Molecular Dynamic simulation. The electrochemical studies were developed such as electrochemical window, galvanostatic cycling with potential limitation and cycling voltammetry showing the obtained capacity of the cell and [Li+] insertion stages during the first reduction step. Moreover, the electrochemical impedance spectroscopy (EIS) during the first reduction process, and XPS analysis of post mortem Gr electrodes stopped at chosen potential during the first reduction process, as well as, after the several charge/discharge cycles were used

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.