Thèse soutenue

Émergence de dynamiques classiques en probabilité quantique

FR  |  
EN
Auteur / Autrice : Ivan Bardet
Direction : Stéphane Attal
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 07/06/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Claude-Alain Pillet
Examinateurs / Examinatrices : Ivan Gentil
Rapporteurs / Rapporteuses : Alex Belton, Franco Fagnola

Résumé

FR  |  
EN

Cette thèse se consacre à l'étude de certaines passerelles existantes entre les probabilités dîtes classiques et la théorie des systèmes quantiques ouverts. Le but de la première partie de ce manuscrit est d'étudier l'émergence de bruits classiques dans l'équation de Langevin quantique. Cette équation sert à modéliser l'action d'un bain quantique sur un petit système dans l'approximation markovienne. L'analogue en temps discret de cette équation est décrit par le schéma des interactions quantiques répétées étudier par Stéphane Attal et Yan Pautrat. Dans des travaux antérieurs, Attal et ses collaborateurs montrent que les bruits classiques naturels apparaissant dans ce cadre sont les variables aléatoires obtuses, dont ils étudient la structure. Mais sont-ils les seuls bruits classiques pouvant émerger, et quand est-il dans le cas général ? De même, en temps continu, il était plus ou moins admis que les seuls bruits classiques apparaissant dans l'équation de Langevin quantique sont les processus de Poisson et le mouvement brownien. Ma contribution dans ce manuscrit consiste à définir une algèbre de von Neumann pertinente sur l'environnement, dite algèbre du bruit, qui encode la structure du bruit. Elle est commutative si et seulement si le bruit est classique ; dans ce cas on confirme les hypothèses précédentes sur sa nature. Dans le cas général, elle permet de montrer une décomposition de l'environnement entre une partie classique maximale et une partie purement quantique. Dans la deuxième partie, nous nous consacrons à l'étude de processus stochastiques classiques apparaissant au sein du système. La dynamique du système est quantique, mais il existe une observable dont l'évolution est classique. Cela se fait naturellement lorsque le semi-groupe de Markov quantique laisse invariante une sous-algèbre de von Neumann commutative et maximale. Nous développons une méthode pour générer de tels semi-groupes, en nous appuyons sur une définition de Stéphane Attal de certaines dilatations d'opérateurs de Markov classiques. Nous montrons ainsi que les processus de Lévy sur Rn admettent des extensions quantiques. Nous étudions ensuite une classe de processus classiques liés aux marches quantiques ouvertes. De tels processus apparaissent lorsque cette fois l'algèbre invariante est le produit tensoriel de deux algèbres, l'une non-commutative et l'autre commutative. Par conséquent, bien que comportant l'aspect trajectoriel propre au processus classiques, de telles marches aléatoires sont hautement quantiques. Nous présentons dans ce cadre une approche variationnelle du problème de Dirichlet. Finalement, la dernière partie est dédiée à l'étude d'un processus physique appelé décohérence induite par l'environnement. Cette notion est fondamentale, puisqu'elle apporte une explication dynamique à l'absence, dans notre vie de tous les jours, de phénomènes quantiques. Nous montrons qu'une telle décohérence a toujours lieu pour des systèmes ouverts décrits par des algèbres de von Neumann finies. Nous initions ensuite une étude innovante sur la vitesse de décohérence, basée sur des inégalités fonctionnelles non-commutatives, qui permet de mettre en avant le rôle de l'intrication quantique dans la décohérence