Thèse soutenue

De la synthèse chimique de nanoparticules aux matériaux magnétiques nano-structurés : une approche pour des aimants permanents sans terre rare

FR  |  
EN
Auteur / Autrice : Marc Pousthomis
Direction : Guillaume ViauLise-Marie Lacroix
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 08/01/2016
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : Sciences de la Matière
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique et Chimie de Nano-Objets - Laboratoire de physique et chimie des nano-objets / LPCNO
Jury : Président / Présidente : Catherine Amiens
Examinateurs / Examinatrices : Guillaume Viau, Lise-Marie Lacroix, Olivier Fruchart, Frédéric Ott, Caroline Cassignol
Rapporteurs / Rapporteuses : Souad Ammar-Merah, Sylvie Begin-Colin

Résumé

FR  |  
EN

La fabrication d’aimants permanents nano-structurés est l’une des solutions envisagées pour remplacer les aimants actuels à base de terres rares, pour lesquelles se posent des problèmes géopolitiques et environnementaux. Dans le but d’élaborer de tels matériaux, nous avons suivi une approche bottom-up utilisant des méthodes chimiques.Nos travaux ont visé dans un premier temps à synthétiser des nanoparticules (NPs) magnétiques dures qui peuvent servir de briques élémentaires dans la fabrication d’aimants nano-structurés. Notre étude systématique sur des nanobâtonnets de cobalt (NBs Co) synthétisés par voie polyol, a montré que leur champ coercitif augmente de 3 à 7 kOe avec la diminution du diamètre et l’augmentation du rapport d’aspect structural. Des simulations micro-magnétiques ont montré qu’un mécanisme de retournement d’aimantation par nucléation-propagation de parois rendait compte des résultats expérimentaux. Des NPs bi-métalliques FePt et tri-métalliques FePtX (X = Ag, Cu, Sn, Sb) de structure CFC ont été obtenues par l’adaptation d’une synthèse organométallique ou par la réduction d’acétylacétonates métalliques. Les recuits à haute température (650°C pour FePt, 400°C pour FePtX) ont conduit à la transition de phase FePt CFC L10 et à des champs coercitifs élevés (>12 kOe). La maîtrise d’un procédé multi-étapes, impliquant la protection des NPs FePt CFC par une coquille MgO et un recuit à 850°C, a permis d’obtenir des NPs FePt L10 de taille moyenne 10 nm présentant des champs coercitifs jusqu’à 27 kOe.La seconde partie de nos travaux a porté sur l’assemblage de NPs présentant des anisotropies différentes. Deux systèmes ont été étudiés : FePt CFC+FeCo CC, FePt L10+NBs Co HCP. Dans les deux cas, le contact entre les deux types de NPs a été favorisé par l’utilisation d’un ligand bi-fonctionnel suivi d’un traitement thermique. Dans le système FePt+FeCo, le recuit à haute température (650°C), nécessaire pour obtenir la phase FePt L10, a entraîné l’inter-diffusion des phases et la quasi-disparition de la phase FeCo CC. Dans le second système FePt+Co, un comportement de spring magnet a clairement été identifié, les deux phases étant efficacement couplées. L’inter-diffusion des phases a été limitée par la température modérée du recuit (400°C). Un champ coercitif de 10 kOe a été mesuré pour une teneur en Pt de seulement 25%at., malgré la perte de la forme anisotrope des NBs Co.