Thèse soutenue

Design, synthèse et spectroscopie de force à l’échelle de la molécule unique de polypeptides biosynthétiques

FR  |  
EN
Auteur / Autrice : Marie Asano
Direction : Sébastien LecommandouxAnne-Sophie Duwez
Type : Thèse de doctorat
Discipline(s) : Polymères
Date : Soutenance le 14/10/2016
Etablissement(s) : Bordeaux en cotutelle avec Université de Liège
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Chimie des Polymères Organiques (Bordeaux)
Jury : Président / Présidente : André Matagne
Examinateurs / Examinatrices : André Matagne, Mathieu Surin, David Alsteens, Nicolas Willet, Olivier Sandre
Rapporteurs / Rapporteuses : Mathieu Surin, David Alsteens

Résumé

FR  |  
EN

Le repliement des protéines est principalement gouverné par les interactions spécifiques des structures secondaires. 1, 2 Toutefois, il existe expérimentalement peu d’informations sur les propriétés mécaniques fondamentales des hélices α et des feuillets β isolées. Les recherches antérieures sur l'étude du déploiement des hélices sont peu concluantes 3-5 et à notre connaissance l'étude des propriétés mécaniques d'un feuillet β isolé, intramoléculaire est sans précédent. Les copolymères PEG114-b-poly(L-lysine)134-(2-pyridyl disulfure),PEG114-b-poly(L-lysine)-b-PEG114 et poly(L-acide glutamique)85-b-(2-pyridyldisulfure) été synthétisés et utilisés comme systèmes modèles pour tester les propriétés mécaniques des motifs secondaires de type hélice α et feuillet β. Les résultats obtenus se sont révélés être en bon accord avec les résultats théoriques obtenus en utilisant un modèle statistique basé sur AGAGIR 6. La différence de force de déroulement comparant les hélices de poly(L-Lysine) ≈ 30 pN et de poly(L-acide glutamique) ≈ 20 pN des copolymères diblocs a été attribuée à l'hydrophobicité différente des chaînes latérales. La plus grande hydrophobie dumotif lysine conduit à de plus grandes interactions entre les chaînes latérales qui empêchent les fluctuations aléatoires au sein de l’hélice, et conduisent à une stabilité supérieure de l'hélice α. Lorsque les expériences ont été conduites dans des conditions favorisant la solubilité des chaînes latérales de lysine, les interactions ont diminué à une force de ≈ 20 pN, similaire à la force des interactions observées pour le poly(L-acide glutamique). Nous supposons qu'un minimum de ≈ 20 pN est nécessaire pour rompre la liaison hydrogène en maintenant l'hélice α, car cette force a été obtenue dans des conditions où les interactions de la chaîne latérale étaient minimisées. La présence de plateaux de force constants et d'inflexions correspondantes démontre une force de dépliement indépendante de la longueur, qui supporte un mécanisme de déroulement tour-par-tour pour l'hélice. De plus, la plus grande hydrophobie des chaînes latérales a été suggérée non seulement pour stabiliser la structure en hélice, mais également pour inhiber la formation d'une structure de type β-turn métastable intermédiaire lorsque les forces entropiques dominent. Des études préliminaires ont été effectuées sur le système de PEG114-bpoly(L-Lysine)134-(2-pyridyl disulfure) après induction d’une transition - β par un traitement thermique dans des conditions basiques. Une inflexion à une force≈ 70 pN a été obtenue, ce qui suggère la formation d'une interaction de type feuillet β. Une stratégie bottom-up a ainsi été proposée avec succès, démontrant le potentiel d'utilisation de tels systèmes artificiels pour simplifier et modéliser des systèmes biologiques réels. La compréhension de ces modèles isolés plus simples aidera sans doute la compréhension de systèmes plus complexes.