Thèse soutenue

Conséquences de la plasticité synaptique aux synapses inhibitrices de la région CA2 de l'hippocampe de souris, dans des conditions normales et pathologiques

FR  |  
EN
Auteur / Autrice : Kaoutsar Nasrallah
Direction : Vivien Chevaleyre
Type : Thèse de doctorat
Discipline(s) : Neurosciences
Date : Soutenance le 23/11/2015
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Cerveau, cognition, comportement (Paris)
Partenaire(s) de recherche : établissement de préparation : Université Paris Descartes (1970-2019)
Laboratoire : Laboratoire de physiologie cérébrale
Jury : Président / Présidente : Claire Legay
Examinateurs / Examinatrices : Vivien Chevaleyre, Claire Legay, Pablo Castillo, Dominique Massotte, Manuel Mameli
Rapporteurs / Rapporteuses : Pablo Castillo, Dominique Massotte

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L'hippocampe est une région du cerveau importante pour la formation de mémoire. Des études récentes ont montré que la zone CA2 de l'hippocampe, longtemps ignorée, joue un rôle clef dans certaines formes de mémoire et notamment dans la mémoire sociale. De plus, des études post-mortem ont révélé des altérations spécifiques à la région CA2 chez les patients schizophrènes. Cependant, l’implication des neurones de CA2 dans les circuits de l'hippocampe reste peu connu, tant dans des conditions physiologiques que pathologiques. En combinant pharmacologie, génétique et électrophysiologie sur tranches d’hippocampe de souris, nous avons étudié comment les neurones pyramidaux (NP) CA2 sont recrutés dans les circuits hippocampiques après des changements d’inhibition et comment le recrutement des NP CA2 pourrait moduler l’information sortant de l'hippocampe. D’autre part, nous avons examiné les altérations fonctionnelles de la zone CA2 dans le modèle murin Df(16)A+/- de la microdélétion 22q11.2, le facteur génétique de risque de schizophrénie le plus élevé. Dans la région CA2 de l’hippocampe, les synapses inhibitrices contrôle les afférences des collatérales de Schaeffer (CS) et expriment une dépression à long-terme (DLTi) unique qui dépendant des récepteurs delta-opioïdes (RDO). Contrairement aux synapses CS-CA1, les synapses excitatrices CS-CA2 n’expriment pas de potentialisation à long-terme après application des protocoles d'induction. Cependant, nous avons constaté que différents types d'activités induisent une augmentation durable de l’amplitude des potentiels post-synaptiques (PPS) évoqués aussi bien par une stimulation des CS que des afférences distales des NP CA2, et ceci via une modulation de la balance excitation/inhibition. Nous avons démontré que ces augmentations du rapport excitation/inhibition sont les conséquences directes de la DLTi RDO-dépendante. De plus, la DLTi permet le recrutement des NP CA2 par les NP CA3 alors qu’une inhibition intacte empêche complètement leur activation en réponse aux stimulations des CS. Par ailleurs, le recrutement des pyramides de CA2 par les CS après disinhibition activité-dépendante ajoute une composante polysynaptique (SC-CA2-CA1) au PPS monosynaptique (SC-CA1) dans les NP CA1 et augmente leur activité. De plus, l’inactivation des interneurones exprimant la parvalbumine à l’aide d’outils pharmacogénétiques, a montré que ces cellules inhibitrices contrôlent fortement l'amplitude du PPS et l’activité des NP CA2 en réponse à la stimulation des CS et qu’elles sont nécessaires à l'augmentation RDO-dépendante du rapport excitation/inhibition entre CA3 et CA2. Enfin, l'étude de la zone CA2 chez les souris Df(16)A+/- a révélé plusieurs modifications dépendantes de l'âge dont une réduction de l'inhibition, une altération de la plasticité du rapport excitation/inhibition entre CA3 et CA2 et une hyperpolarisation NP CA2. Ces modifications cellulaires peuvent expliquer les déficiences de mémoire sociale que nous observons chez les souris Df(16)A+/- adultes. L’ensemble de nos études a permis de mettre en évidence le rôle des neurones CA2 dans les circuits de l'hippocampe. Enfin pour conclure, nous postulons que le recrutement des neurones CA2 dans les réseaux neuronaux sous-tend des aspects particuliers de la fonction de l'hippocampe.